Chia-Jung Yu
Chang Gung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chia-Jung Yu.
Journal of Immunology | 2003
Chia-Jung Yu; Yu-Fen Lin; Bor-Luen Chiang; Lu-Ping Chow
Shellfish are a common cause of adverse food reactions in hypersensitive individuals and shrimp is one of the most frequently reported causes of allergic reactions. A novel allergen from Penaeus monodon, designated Pen m 2, was identified by two-dimensional immunoblotting using sera from subjects with shrimp allergy, followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the peptide digest. This novel allergen was then cloned and the amino acid sequence deduced from the cDNA sequence. The cloned cDNA encoded a 356-aa protein with an acetylated N terminus at Ala2, identified by postsource decay analysis. Comparison of the Pen m 2 sequence with known protein sequences revealed extensive similarity with arginine kinase (EC 2.7.3.3) from crustaceans. Pen m 2 was purified by anion exchange chromatography and shown to have arginine kinase activity and to react with serum IgE from shrimp allergic patients and induce immediate type skin reactions in sensitized patients. Using Pen m 2-specific antisera and polyclonal sera from shrimp-sensitive subjects in a competitive ELISA inhibition assay, Pen m 2 was identified as a novel cross-reactive Crustacea allergen. This novel allergen could be useful in allergy diagnosis and in the treatment of Crustacea-derived allergic disorders.
Molecular & Cellular Proteomics | 2010
Chih-Ching Wu; Chia-Wei Hsu; Chi-De Chen; Chia-Jung Yu; Kai-Ping Chang; Dar-In Tai; Hao-Ping Liu; Wen-Hui Su; Yu-Sun Chang; Jau-Song Yu
Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6–137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.
American Journal of Human Genetics | 2009
Ka Po Tse; Wen-Hui Su; Kai Ping Chang; Ngan Ming Tsang; Chia-Jung Yu; Petrus Tang; Lee Chu See; Chuen Hsueh; Min Lee Yang; Sheng Po Hao; Hong Yi Li; Ming Hsi Wang; Li Ping Liao; Lih Chyang Chen; Sheue Rong Lin; Timothy J. Jorgensen; Yu-Sun Chang; Yin Yao Shugart
Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy closely associated with genetic factors and Epstein-Barr virus infection. To identify the common genetic variants linked to NPC susceptibility, we conducted a genome-wide association study (GWAS) in 277 NPC patients and 285 healthy controls within the Taiwanese population, analyzing 480,365 single-nucleotide polymorphisms (SNPs). Twelve statistically significant SNPs were identified and mapped to chromosome 6p21.3. Associations were replicated in two independent sets of case-control samples. Two of the most significant SNPs (rs2517713 and rs2975042; p(combined) = 3.9 x 10(-20) and 1.6 x 10(-19), respectively) were located in the HLA-A gene. Moreover, we detected significant associations between NPC and two genes: specifically, gamma aminobutyric acid b receptor 1 (GABBR1) (rs29232; p(combined) = 8.97 x 10(-17)) and HLA-F (rs3129055 and rs9258122; p(combined) = 7.36 x 10(-11) and 3.33 x 10(-10), respectively). Notably, the association of rs29232 remained significant (residual p < 5 x 10(-4)) after adjustment for age, gender, and HLA-related SNPs. Furthermore, higher GABA(B) receptor 1 expression levels can be found in the tumor cells in comparison to the adjacent epithelial cells (p < 0.001) in NPC biopsies, implying a biological role of GABBR1 in NPC carcinogenesis. To our knowledge, it is the first GWAS report of NPC showing that multiple loci (HLA-A, HLA-F, and GABBR1) within chromosome 6p21.3 are associated with NPC. Although some of these relationships may be attributed to linkage disequilibrium between the loci, the findings clearly provide a fresh direction for the study of NPC development.
Proteomics | 2008
Chih-Ching Wu; Hua-Chien Chen; Su-Jen Chen; Hao-Ping Liu; Yi-Yueh Hsieh; Chia-Jung Yu; Rei-Ping Tang; Ling-Ling Hsieh; Jau-Song Yu; Yu-Sun Chang
The cancer cell secretome may contain many potentially useful biomarkers. We therefore sought to identify proteins in the conditioned media of colorectal carcinoma (CRC) cell lines but not in those from other cancer cell lines. The secretomes of 21 cancer cell lines derived from 12 cancer types were analyzed by SDS‐PAGE combined with MALDI‐TOF MS. Among the 325 proteins identified, collapsin response mediator protein‐2 (CRMP‐2) was chosen for evaluation as a potential CRC biomarker, since it was selectively detected in the CRC cell line secretome and has never been reported as a cancer biomarker. Immunohistochemical analysis of 169 CRC specimens showed that CRMP‐2 was positively detected in 58.6% of the tumors, but weakly or not detected in >90% of the adjacent nontumor epithelial cells. Moreover, the CRMP‐2‐positive rate was significantly increased in earlier stage tumors and lymph node metastasis. Plasma CRMP‐2 levels were significantly higher in CRC patients (N = 201) versus healthy controls (N = 201) (61.3 ± 34.6 vs. 40.2 ± 24.3 ng/mL, p = 0.001). Our results indicate that comparative analysis of cancer cell secretome is a feasible strategy for identifying potential cancer biomarkers, and that CRMP‐2 may be a novel CRC biomarker.
International Journal of Cancer | 2011
Chun-I Wang; Chih-Liang Wang; Chih-Wei Wang; Chi-De Chen; Chih-Ching Wu; Ying Liang; Ying-Huang Tsai; Yu-Sun Chang; Jau-Song Yu; Chia-Jung Yu
The cancer cell secretome may contain potentially useful biomarkers. In this study, we integrated the profiles of secreted proteins in lung cancer cell lines with mRNA expression levels from pulmonary adenocarcinoma tissue, with a view to identify effective biomarkers for non‐small cell lung cancer (NSCLC). Among the novel candidates isolated, importin subunit alpha‐2 (also known as karyopherin subunit alpha [KPNA]‐2), was selected for further validation. Immunohistochemical staining revealed overexpression of KPNA2 in the nuclei of tumor cells, compared with adjacent normal cells. A sandwich ELISA assay developed to detect KPNA2 levels in serum samples showed significantly higher serum KPNA2 in NSCLC patients than in healthy controls. A combination of serum KPNA2 and carcinoembryonic antigen displayed higher diagnostic capacity than either marker alone. Importantly, protein levels of KPNA2 in pleural effusion from NSCLC patients were also significantly higher than those from non‐lung cancer. Moreover, knockdown of KPNA2 inhibited the migration ability and viability of lung cancer cells. Our results collectively suggest that integration of the cancer cell secretome and transcriptome datasets provides an efficient means of identifying novel biomarkers for NSCLC, such as KPNA2.
Molecular & Cellular Proteomics | 2009
Lang-Ming Chi; Chien-Wei Lee; Kai-Ping Chang; Sheng-Po Hao; Hang-Mao Lee; Ying Liang; Chuen Hsueh; Chia-Jung Yu; I-Neng Lee; Yin-Ju Chang; Shih-Ying Lee; Yuan-Ming Yeh; Yu-Sun Chang; Kun-Yi Chien; Jau-Song Yu
Oral squamous cell carcinoma (OSCC) remains one of the most common cancers worldwide, and the mortality rate of this disease has increased in recent years. No molecular markers are available to assist with the early detection and therapeutic evaluation of OSCC; thus, identification of differentially expressed proteins may assist with the detection of potential disease markers and shed light on the molecular mechanisms of OSCC pathogenesis. We performed a multidimensional 16O/18O proteomics analysis using an integrated ESI-ion trap and MALDI-TOF/TOF MS system and a computational data analysis pipeline to identify proteins that are differentially expressed in microdissected OSCC tumor cells relative to adjacent non-tumor epithelia. We identified 1233 unique proteins in microdissected oral squamous epithelia obtained from three pairs of OSCC specimens with a false discovery rate of <3%. Among these, 977 proteins were quantified between tumor and non-tumor cells. Our data revealed 80 dysregulated proteins (53 up-regulated and 27 down-regulated) when a 2.5-fold change was used as the threshold. Immunohistochemical staining and Western blot analyses were performed to confirm the overexpression of 12 up-regulated proteins in OSCC tissues. When the biological roles of 80 differentially expressed proteins were assessed via MetaCore™ analysis, the interferon (IFN) signaling pathway emerged as one of the most significantly altered pathways in OSCC. As many as 20% (10 of 53) of the up-regulated proteins belonged to the IFN-stimulated gene (ISG) family, including ubiquitin cross-reactive protein (UCRP)/ISG15. Using head-and-neck cancer tissue microarrays, we determined that UCRP is overexpressed in the majority of cheek and tongue cancers and in several cases of larynx cancer. In addition, we found that IFN-β stimulates UCRP expression in oral cancer cells and enhances their motility in vitro. Our findings shed new light on OSCC pathogenesis and provide a basis for the future development of novel biomarkers.
Journal of Biomedical Science | 2009
Bor-Ru Lin; Chia-Jung Yu; Wang-Chuan Chen; Hsuan-Shu Lee; Huei-Min Chang; Yen-Chih Lee; Chiang Ting Chien; Chau-Fong Chen
Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI). The present study was undertaken to determine whether D-galactosamine (D-GalN) induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s) by which green tea (GT) extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS) production from affected hepatocytes, infiltrated leukocytes, and activated Kupffer cells. D-GalN evoked cytosolic Bax and mitochondrial cytochrome C translocation and activated proinflammatory nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) translocation, contributing to the increase of intercellular adhesion molecule-1 expression, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL)-positive hepatocytes, multiple plasma cytokines and chemokines release, and alanine aminotransferase (ALT) activity. An altered biliary secretion profile of several acute phase proteins directly indicates oxidative stress affecting intracellular trafficking in the hepatocyte. GT pretreatment attenuated ROS production, mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, plasma ALT and cytokines levels, biliary acute phase proteins secretion and hepatic pathology by the enhancement of anti-apoptotic mechanisms. In conclusion, D-GalN induced ALI via hypoxia/hypoperfusion-enhanced mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, contributing to oxidative stress and inflammation in the liver. GT can counteract the D-GalN-induced ALI via the attenuation of apoptotic and proinflammatory signaling by the upregulation of anti-apoptotic mechanism.
Journal of Proteome Research | 2009
Chih-Liang Wang; Chun-I Wang; Pao-Chi Liao; Chi-De Chen; Ying Liang; Wen-Yu Chuang; Ying-Huang Tsai; Hua-Chien Chen; Yu-Sun Chang; Jau-Song Yu; Chih-Ching Wu; Chia-Jung Yu
Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer, which is one of the most prominent causes of cancer-related mortality worldwide. Discovery of serum tumor markers could facilitate early NSCLC detection and metastatic prognosis. Here, we simultaneously analyzed the NSCLC cell secretome and proteomic profiles of pleural effusion from lung adenocarcinoma patients for NSCLC biomarker discovery. Retinoblastoma-associated binding protein 46 (RbAp46), one of the proteins detected both in NSCLC cell secretome and pleural effusion proteome, was chosen for further evaluation. Both of RbAp46 mRNA and protein levels were upregulated significantly in NSCLC cancer tissues. Serum levels of RbAp46 were markedly higher in NSCLC patients than in healthy controls, and a combination of RbAp46 and CEA could outperform CEA alone in discriminating NSCLC patients from healthy persons. Importantly, elevated serum RbAp46 level was highly correlated with NSCLC distant metastasis. Moreover, knockdown of RbAp46 inhibited the migration ability of lung cancer cells. Our data collectively suggest that RbAp46 serves as a novel biomarker and prognosticator for NSCLC, and is involved in lung cancer cell migration.
FEBS Letters | 2004
Chia-Jung Yu; Yee-Chun Chen; Cheng-Hsiang Hsiao; Tse-Chun Kuo; Shin C. Chang; Chun-Yi Lu; Wen-Chin Wei; Chia-Huei Lee; Li-Min Huang; Ming-Fu Chang; Hong-Nerng Ho; Fang-Jen S. Lee
The open reading frame 3 of the severe acute respiratory syndrome coronavirus (SARS‐CoV) genome encodes a predicted protein 3a, consisting of 274 amino acids, that lacks any significant similarities to any known protein. We generated specific antibodies against SARS protein 3a by using a synthetic peptide (P2) corresponding to amino acids 261–274 of the putative protein. Anti‐P2 antibodies and the sera from SARS patients could specifically detect the recombinant SARS protein 3a expressed in Escherichia coli and in Vero E6 cells. Expression of SARS protein 3a was detected at 8–12 h after infection and reached a higher level after ∼24 h in SARS‐CoV‐infected Vero E6 cells. Protein 3a was also detected in the alveolar lining pneumocytes and some intra‐alveolar cells of a SARS‐CoV‐infected patients lung specimen. Recombinant protein 3a expressed in Vero E6 cells and protein 3a in the SARS‐CoV‐infected cells was distributed over the cytoplasm in a fine punctate pattern with partly concentrated staining in the Golgi apparatus. Our study demonstrates that SARS‐CoV indeed expresses a novel protein 3a, which is present only in SARS‐CoV and not in other known CoVs.
Molecular & Cellular Proteomics | 2012
Chun-I Wang; Kun-Yi Chien; Chih-Liang Wang; Hao-Ping Liu; Chia-Chen Cheng; Yu-Sun Chang; Jau-Song Yu; Chia-Jung Yu
The process of nucleocytoplasmic shuttling is mediated by karyopherins. Dysregulated expression of karyopherins may trigger oncogenesis through aberrant distribution of cargo proteins. Karyopherin subunit alpha-2 (KPNA2) was previously identified as a potential biomarker for nonsmall cell lung cancer by integration of the cancer cell secretome and tissue transcriptome data sets. Knockdown of KPNA2 suppressed the proliferation and migration abilities of lung cancer cells. However, the precise molecular mechanisms underlying KPNA2 activity in cancer remain to be established. In the current study, we applied gene knockdown, subcellular fractionation, and stable isotope labeling by amino acids in cell culture-based quantitative proteomic strategies to systematically analyze the KPNA2-regulating protein profiles in an adenocarcinoma cell line. Interaction network analysis revealed that several KPNA2-regulating proteins are involved in the cell cycle, DNA metabolic process, cellular component movements and cell migration. Importantly, E2F1 was identified as a potential novel cargo of KPNA2 in the nuclear proteome. The mRNA levels of potential effectors of E2F1 measured using quantitative PCR indicated that E2F1 is one of the “master molecule” responses to KPNA2 knockdown. Immunofluorescence staining and immunoprecipitation assays disclosed co-localization and association between E2F1 and KPNA2. An in vitro protein binding assay further demonstrated that E2F1 interacts directly with KPNA2. Moreover, knockdown of KPNA2 led to subcellular redistribution of E2F1 in lung cancer cells. Our results collectively demonstrate the utility of quantitative proteomic approaches and provide a fundamental platform to further explore the biological roles of KPNA2 in nonsmall cell lung cancer.