Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chia Yao Shen is active.

Publication


Featured researches published by Chia Yao Shen.


Cellular Physiology and Biochemistry | 2015

17β-Estradiol and/or Estrogen Receptor β Attenuate the Autophagic and Apoptotic Effects Induced by Prolonged Hypoxia Through HIF-1α-Mediated BNIP3 and IGFBP-3 Signaling Blockage

Dennis Jine Yuan Hsieh; Wei Wen Kuo; Yi Ping Lai; Marthandam Asokan Shibu; Chia Yao Shen; Peiying Pai; Yu Lan Yeh; Jing Ying Lin; Vijaya Padma Viswanadha; Chih Yang Huang

Background/Aims: The risk of heart disease is higher in males than in females. However, this advantage of females declines with increasing age, presumably a consequence of decreased estrogen secretion and malfunctioning of the estrogen receptor. We previously demonstrated that 17β-estradiol (E2) prevents cardiomyocyte hypertrophy, autophagy and apoptosis via estrogen receptor α (ERα), but the effects of ERβ on myocardial injury remained elusive. The present paper thus, investigated the cardioprotective effects of estrogen (E2) and ERβ against hypoxia-induced cell death. Methods: Transient transfection of Tet-On ERβ gene construct was used to overexpress ERβ in hypoxia-treated H9c2 cardiomyoblast cells. Results: Our data revealed that IGF1R, Akt phosphorylation and Bcl-2 expression are enhanced by ERβ in H9c2 cells. Moreover, ERβ overexpression reduced accumulation of hypoxia-related proteins, autophagy-related proteins and mitochondria-apoptotic proteins and enhanced the protein levels of Bcl-2, pAkt and Bad under hypoxic condition. In neonatal rat ventricular myocytes (NRVMs), we observed that hypoxia induced cell apoptosis as measured by TUNEL staining, and E2 and/or ERβ could totally abolish hypoxia-induced apoptosis. The suppressive effects of E2 and/or ERβ in hypoxia-treated NRVMs were totally reversed by ER antagonist, ICI. Taken together, E2 and/or ERβ exert the protective effect through repressed hypoxia-inducible HIF-1α, BNIP3 and IGFBP-3 levels to restrain the hypoxia-induced autophagy and apoptosis effects in H9c2 cardiomyoblast cells. Conclusion: The results suggest that females probably could tolerate better prolonged hypoxia condition than males, and E2/ERβ treatment could be a potential therapy to prevent hypoxia-induced heart damage.”


Journal of Cellular Physiology | 2012

p38α MAPK mediates 17β-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells†

Hsi Hsien Hsu; Chung Jung Liu; Chia Yao Shen; Yi Jyun Chen; Li Mien Chen; Wu Hsien Kuo; Yueh Min Lin; Ray Jade Chen; Chang Hai Tsai; Fuu Jen Tsai; Chih Yang Huang

Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β‐estradiol (E2) treatment is sufficient to inhibit cell proliferation and cell migration in human colon cancer cells. Up‐regulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. In the present study, we treated human LoVo colon cancer cells with E2 to explore whether E2 down‐regulates cell proliferation and migration, and to identify the precise molecular and cellular mechanisms behind the down‐regulatory responses. Here, we found that E2 treatment decreased cell proliferation and cell cycle‐regulating factors such as cyclin A, cyclin D1 and cyclin E. At the same time, E2 significantly inhibited cell migration and migration‐related factors such as uPA, tPA, MMP‐2, and MMP‐9. However, E2 treatment showed no effects on upregulating expression of plasminogen activator inhibitor‐1 (PAI‐1), tissue inhibitor of metalloproteinase‐1, ‐2, ‐3, and ‐4 (TIMP‐1, ‐2, ‐3, and ‐4). After administration of inhibitors including QNZ (NFκB inhibitor), LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor) or SP600125 (JNK1/2 inhibitor), E2‐downregulated cell migration and expression of MMP‐2 and MMP‐9 in LoVo cells is markedly inhibited only by p38 MAPK inhibitors, SB203580. Application of specific target gene siRNA (ERα, ERβ, p38α, and p38β) to LoVo cells further confirmed that p38 MAPK mediates E2/ERs inhibition of MMP‐2 and ‐9 expression and cell motility in LoVo cells.


Cellular Physiology and Biochemistry | 2015

Tetramethylpyrazine Ameliorated Hypoxia- Induced Myocardial Cell Apoptosis via HIF-1α/JNK/p38 and IGFBP3/BNIP3 Inhibition to Upregulate PI3K/Akt Survival Signaling

Kuan Ho Lin; Wei Wen Kuo; Ai Zhi Jiang; Peiying Pai; Jing Ying Lin; Wei Kung Chen; Cecilia Hsuan Day; Chia Yao Shen; V. Vijaya Padma; Chih Yang Huang

Background: Hemorrhagic shock (HS) is the major cause of death from trauma. Hemorrhagic shock may lead to cellular hypoxia and organ damage. Our previous findings showed that HS induced a cardiac apoptosis pathway and synergistically caused myocardial cell damage in diabetic rats under trauma-induced HS. Tetramethylpyrazine (TMP) is a major biologically active ingredient purified from the rhizome of Ligusticum wallichii (called Chuang Xiong in Chinese). Chuan Xiong rescued cells from synergistic cardiomyoblast cell injury under high-glucose (HG) conditions plus hypoxia. TMP is one of the most important active ingredients that elevated the survival rate in ischemic brain injury and prevented inducible NO synthase expression to have anti-inflammatory effects against cell damage in different cell types. Method: Here, we further investigate whether TMP can protect against hypoxic (<1% oxygen) conditions in H9c2 cardiomyoblast cells for 24 hrs. Results: Our results showed that hypoxia mediated through HIF-1α/JNK/p38 activation significantly elevated the levels of the hypoxia-related proteins HIF-1α, BNIP3 and IGFBP3, further enhanced the pro-apoptotic protein Bak and upregulated downstream Caspase 9 and 3, resulting in cell death. All of these phenomena were fully recovered under TMP treatment. We observed that TMP exerted this effect by activating the IGF1 receptor survival pathway, dependent primarily on PI3K/Akt. When PI3K (class I) was blocked by specific siRNA, the hypoxia-induced activated caspase 3 and cell apoptosis could not be reversed by TMP treatment. Conclusion: Our results strongly suggest that TMP could be used to restore hypoxia-induced myocardial cell apoptosis and cardiac hypoxic damage.


British Journal of Nutrition | 2015

Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function

Wei Jen Ting; Wei Wen Kuo; Chia-Hua Kuo; Yu Lan Yeh; Chia Yao Shen; Ya Hui Chen; Tsung Jung Ho; Vijaya Padma Viswanadha; Yi Hsing Chen; Chih Yang Huang

Obesity and hyperlipidaemia increase the risk of CVD. Some strains of probiotics have been suggested to have potential applications in cardiovascular health by lowering serum LDL-cholesterol. In this work, high-fat diet-induced hyperlipidaemia in hamsters was treated with different doses (5×108 and 2·5×109 cells/kg per d) of heat-killed Lactobacillus reuteri GMNL-263 (Lr263) by oral gavage for 8 weeks. The serum lipid profile analysis showed that LDL-cholesterol and plasma malondialdehyde (P-MDA) were reduced in the GMNL-263 5×108 cells/kg per d treatment group. Total cholesterol and P-MDA were reduced in the GMNL-263 2·5×109 cells/kg per d treatment group. In terms of heart function, the GMNL-263 2·5×109 cells/kg per d treatments improved the ejection fraction from 85·71 to 91·81 % and fractional shortening from 46·93 to 57·92 % in the high-fat diet-fed hamster hearts. Moreover, the GMNL-263-treated, high-fat diet-fed hamster hearts exhibited reduced Fas-induced myocardial apoptosis and a reactivated IGF1R/PI3K/Akt cell survival pathway. Interestingly, the GMNL-263 treatments also enhanced the heat-shock protein 27 expression in a dose-dependent manner, but the mechanism for this increase remains unclear. In conclusion, supplementary heat-killed L. reuteri GMNL-263 can slightly reduce serum cholesterol. The anti-hyperlipidaemia effects of GMNL-263 may reactivate the IGF1R/PI3K/Akt cell survival pathway and reduce Fas-induced myocardial apoptosis in high-fat diet-fed hamster hearts.


World Journal of Gastroenterology | 2014

Estradiol agonists inhibit human LoVo colorectal-cancer cell proliferation and migration through p53

Hsi Hsien Hsu; Wei Wen Kuo; Da Tong Ju; Yu Lan Yeh; Chuan Chou Tu; Ying Lan Tsai; Chia Yao Shen; Sheng Huang Chang; Li Chin Chung; Chih Yang Huang

AIM To investigate the effects of 17β-estradiol via estrogen receptors (ER) or direct administration of ER agonists on human colorectal cancer. METHODS LoVo cells were established from the Bioresource Collection and Research Center and cultured in phenol red-free DMEM (Sigma, United States). To investigate the effects of E2 and/or ER selective agonists on cellular proliferation, LoVo colorectal cells were treated with E2 or ER-selective agonists for 24 h and 48 h and subjected to the MTT (Sigma) assay to find the concentration. And investigate the effects of E2 and/or ER selective agonists on cell used western immunoblotting to find out the diversification of signaling pathways. In order to observe motility and migration the wound healing assay and a transwell chamber (Neuro Probe) plate were tased. For a quantitative measure, we counted the number of migrating cells to the wound area post-wounding for 24 h. We further examined the cellular migration-regulating factors urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and matrix metalloproteinase (MMP)-9 in human LoVo cells so gelatin zymography that we used and gelatinolytic activity was visualized by Coomassie blue staining. And these results are presented as means ± SE, and statistical comparisons were made using Students t-test. RESULTS The structure was first compared with E2 and ER agonists. We then treated the LoVo cells with E2 and ER agonists (10(-8) mol/L) for 24 h and 48 h and subsequently measured the cell viability using MTT assay. Our results showed that treatment with 17β-estradiol and/or ER agonists in human LoVo colorectal cancer cells activated p53 and then up-regulated p21 and p27 protein levels, subsequently inhibiting the downstream target gene, cyclin D1, which regulates cell proliferation. Taken together, our findings demonstrate the anti-tumorigenesis effects of 17β-estradiol and/or ER agonists and suggest that these compounds may prove to be a potential alternative therapy in the treatment of human colorectal cancer. These results demonstrate that 17β-estradiol and/or ER agonists downregulate migration-related proteins through the p53 signaling pathway in human LoVo colorectal cancer cells. These findings suggest that p53 plays a critical role in the 17β-estradiol and/or ER agonist-mediated protective activity against colorectal cancer progression. In addition, 17β-estradiol and/or ER agonists dramatically inhibited cell migration and reduced the expression of u-PA, t-PA and MMP-9 as well as MMP-2/9 activity in LoVo cells, which regulate cell metastasis. Moreover, we observed that pretreatment with a p53 inhibitor significantly blocked the anti-migration effects of E2 and/or ER agonists on LoVo cells. That E2 and/or ER agonists may impair LoVo cell migration by modulating migration-related factors via the p53 tumor suppressor gene. CONCLUSION Direct ER treatment may prove to be an attractive alternative therapy in the treatment of human colorectal tumors in the future.


The American Journal of Chinese Medicine | 2014

Novel Target Genes Responsive to Apoptotic Activity by Ocimum gratissimum in Human Osteosarcoma Cells

Chien Chung Lin; Pei Yu Chao; Chia Yao Shen; Jyuan Jen Shu; Shiow Kang Yen; Chih Yang Huang; Jer Yuh Liu

Osteosarcoma (OS) is a type of bone cancer. Eighty percent of this tumor will metastasize to the lungs or liver, and as a result, patients generally need chemotherapy to improve survival possibility. Recently, antitumor activity has been reported in Ocimum gratissimum aqueous extract (OGE), which has been the focus of recent extensive studies on therapeutic strategies due to its antioxidant properties. We performed pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth. Cell viability, Western blot and flow cytometry analysis were performed before performing pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth, including cDNA microarray and RT-PCR assays. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of U2-OS and HOS cells. Increases in cell shrinkage, Sub-G1 fragments and the activation of caspase 3 indicated that OGE induced cell apoptosis in U2-OS and HOS cells. There was no change in human osteoblast hFOS cells. cDNA microarray assay demonstrated that the expression of cell cycle regulators, apoptosis-related factors and cell proliferation markers were all modified by OGE treatment. RT-PCR analysis also confirmed the down-regulation of SKA2 and BUB1B, and the up-regulation of PPP1R15A, SQSTM1, HSPA1B, and DDIT4 by OGE treatment. The finding of anticancer activity in OGE and the identification of some potential target genes raise the expectation that OGE may become a useful therapeutic drug for human OS.


The American Journal of Chinese Medicine | 2014

Dilong prevents the high-KCl cardioplegic solution administration-induced apoptosis in H9c2 cardiomyoblast cells mediated by MEK

Chien Kuo Han; Wei Wen Kuo; Chia Yao Shen; Tung Sheng Chen; Peiying Pai; Chang Hai Tsai; Feng Yueh Lo; Da Tong Ju; Chih Yang Huang

Infusion of high-KCl cardioplegic solution (High-KCS) is the most common method used to induce asystole before cardiac surgery. However, our previous study showed the High-KCS can cause the apoptosis of cardiomyocytes in patients who were administered High-KCS prior to undergoing coronary artery bypass graft (CABG) to treat coronary artery disease (CAD). Therefore, it is urgent today to find a complementary medicine to reduce this damage. Dilong (earthworm) has been used as a traditional medicine in China for several thousand years, and extract from the dilong has been empirically used in Asia for the treatment of vascular disorders. In this study, we applied dilong extract to reduce myocardial cell damage from High-KCS infusion and further investigated the mechanisms. H9c2 cardiomyoblast cells were cultured in serum-free medium for 4 h and then treated with dilong at 31.25, 62.5, 125, and 250 mg/mL for 24 h, which was then followed by High-KCS treatment for 3 h to detect the protective mechanisms of dilong behind cardiomyocyte apoptosis and cardiac fibrosis. Cells were harvested for MTT assay, TUNEL assay, and western blot analysis. We found that High-KCS-induced cardiomyocyte apoptosis, enhanced the protein level of pro-apoptotic Bad, released cytochrome c, and activated caspase-3 in H9c2 cells. The IGF-I/IGF-IR/ERK pathway involved in non-cardiomyocyte proliferation, and the expression/activation of uPA, Sp-1 and CTGF, which are implicated in the development of cardiac fibrosis were up-regulated, but the Akt for cardiomyocyte survival was greatly deactivated in postcardioplegic H9c2 cardiomyoblast cells. However, dilong was highly protective and totally reversed the apoptosis and cardiac fibrosis effects induced by High-KCS. Chemical inhibitors P38 (SB203580), JNK (SP600125), MEK (U0126), IGF-1 (AG1024), and PI3K (LY294002) were applied to investigate which is the mediator for dilong attenuated High-KCS stimulated caspase 3 activation. MEK (U0126) inhibitor completely blocked dilong inhibited caspase 3 activation in High-KCS treated H9c2 cells. The MEK siRNA was further applied to knockdown MEK to confirm our finding. We found dilong worked through MEK to inhibit caspase 3 activity induced by High-KCS in H9c2 cells. Furthermore, we used the pure component of dilong, Lumbrokinase, to block the High-KCS effect. Using the microscope to observe the cell viability, we found Lumbrokinase could reverse the High-KCS effect. Lumbrokinase could also reduce the protein levels of caspase 8, caspase 9, and caspase 3, and enhance the survival related proteins PI3K/Akt and Bcl2. These results demonstrate that dilong could be used as a potential agent to block the side effects caused by High-KCS in CABG surgery patients.


Growth Factors Journal | 2015

Long-term hypoxia exposure enhanced IGFBP-3 protein synthesis and secretion resulting in cell apoptosis in H9c2 myocardial cells.

Ruey Lin Chang; Jing Wei Lin; Dennis Jine Yuan Hsieh; Yu Lan Yeh; Chia Yao Shen; Cecilia Hsuan Day; Tsung Jung Ho; Vijaya Padma Viswanadha; Wei Wen Kuo; Chih Yang Huang

Abstract Myocardial infarction (MI) usually results in myocardial ischemia, remodeling and hypoxia that lead to cell death. To date, the insulin-like growth factor binding protein-3 (IGFBP3) is known to play an important role in insulin growth factor (IGF) bioavailability. Previous studies have found that hypoxia results in cell apoptosis. However, the detailed mechanism and roles of IGFBP3 in long-term hypoxia (LTH) regulated heart cell apoptosis remains unknown. In this study H9c2 cardiomyoblast cells were treated with investigated long-term hypoxic exposure with the possible mechanisms involved. The results showed that LTH enhanced IGFBP3 protein synthesis and induced its secretion. The accumulated IGFBP3 sequestered Insulin growth factor 1 (IGF-1) away from the type I IGF receptor (IGF-1 R), which blocked the IGF1R/PI3K/Akt survival signaling pathway, resulting in cell apoptosis. According to our findings, IGFBP3 could be a valuable target for developing treatments for cardiac diseases in long-term hypoxia exposure patients.


Cell Transplantation | 2013

Mesenchymal stem cell insights: Prospects in hematological transplantation

Shiu Huey Chou; Shinn Zong Lin; Cecilia Hsuan Day; Wei Wen Kuo; Chia Yao Shen; Dennis Jine Yuan Hsieh; Jing Ying Lin; Fuu Jen Tsai; Chang Hai Tsai; Chih Yang Huang

Adult stem cells have been proven to possess tremendous potential in the treatment of hematological disorders, possibly in transplantation. Mesenchymal stem cells (MSCs) are a heterogeneous group of cells in culture, with hypoimmunogenic character to avoid alloreactive T-cell recognition as well as inhibition of T-cell proliferation. Numerous experimental findings have shown that MSCs also possess the ability to promote engraftment of donor cells and to accelerate the speed of hematological recovery. Despite that the exact mechanism remains unclear, the therapeutic ability of MSCs on hematologic transplantation have been tested in preclinical trials. Based on encouraging preliminary findings, MSCs might become a potentially efficacious tool in the therapeutic options available to treat and cure hematological malignancies and nonmalignant disorders. The molecular mechanisms behind the real efficacy of MSCs on promoting engraftment and accelerating hematological recovery are awaiting clarification. It is hypothesized that direct cell-to-cell contact, paracrine factors, extracellular matrix scaffold, BM homing capability, and endogenous metabolites of immunologic and nonimmunologic elements are involved in the interactions between MSCs and HSCs. This review focuses on recent experimental and clinical findings related to MSCs, highlighting their roles in promoting engraftment, hematopoietic recovery, and GvHD/graft rejection prevention after HSCT, discussing the potential clinical applications of MSC-based treatment strategies in the context of hematological transplantation.


Oncotarget | 2015

Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts

Po Hsiang Liao; Dennis Jine Yuan Hsieh; Chia-Hua Kuo; Cecilia Hsuan Day; Chia Yao Shen; Chao Hung Lai; Ray Jade Chen; V. Vijaya Padma; Wei Wen Kuo; Chih Yang Huang

Aging is the most important risk factor in cardiovascular disease (CVD), which is the leading causes of death worldwide and the second major cause of death in Taiwan. The major factor in heart failure during aging is heart remodeling, including long-term stress-induced cardiac hypertrophy and fibrosis. Exercise is good for aging heart health, but the impact of exercise training on aging is not defined. This study used 3-, 12- and 18-month-old rats and randomly divided each age group into no exercise training control groups (C3, A12 and A18) and moderate gentle swimming exercise training groups (E3, AE12 and AE18). The protocol of exercise training was swimming five times weekly with gradual increases from the first week from 20 to 60 min for 12 weeks. Analyses of protein from rat heart tissues and sections revealed cardiac inflammation, hypertrophy and fibrosis pathway increases in aged rat groups (A12 and A18), which were improved in exercise training groups (AE12 and AE18). There were no heart injuries in young rat hearts in exercise group E3. These data suggest that moderate swimming exercise training attenuated aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts.

Collaboration


Dive into the Chia Yao Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Jade Chen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsi Hsien Hsu

Mackay Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Li Chin Chung

Chia Nan University of Pharmacy and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su Ying Wen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chien Chung Lin

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge