Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li Chin Chung is active.

Publication


Featured researches published by Li Chin Chung.


The American Journal of Chinese Medicine | 2015

Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation

Yueh Shan Weng; Hsueh Fang Wang; Peiying Pai; Gwo Ping Jong; Chao Hung Lai; Li Chin Chung; Dennis Jine Yuan Hsieh; Cecilia HsuanDay; Wei Wen Kuo; Chih Yang Huang

IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.


Bioscience, Biotechnology, and Biochemistry | 2013

Suppression of Plasminogen Activators and the MMP-2/-9 Pathway by a Zanthoxylum avicennae Extract to Inhibit the HA22T Human Hepatocellular Carcinoma Cell Migration and Invasion Effects in Vitro and in Vivo via Phosphatase 2A Activation

Tran Duc Dung; Chih Chung Feng; Wei Wen Kuo; Peiying Pai; Li Chin Chung; Sheng Huang Chang; Hsi Hsien Hsu; Fuu Jen Tsai; Yueh Min Lin; Chih Yang Huang

This study shows that the ECM degradation-associated pathway, including uPA and tPA and the downstream MMP-2/-9 protein, was significantly suppressed in HA22T cells treated with a Zanthoxylum avicennae extract (YBBE). The endogenous inhibitors, including TIMP-1/-2 and PAI-1, were enhanced in HA22T cells by the YBBE treatment. The expression of MMP-2/-9 and TIMP-1/-2 was respectively assessed by using RT-PCR and a zymography assay. The mRNA levels and enzymatic activity of MMP-2/-9 were down-regulated by the YBBE treatment in a dose-dependent manner, while the TIMP-1/-2 levels were conversely markedly increased. The PP2A siRNA or PP2A inhibitor totally reversed the YBBE effects, confirming the essential role of PP2A in YBBE inhibiting the HA22T cell migration and invasion effects. Xenografted animal experiments on nude mice demonstrated similiar results to the in vitro system. Both the in vitro and in vivo models clearly demonstrate that YBBE inhibited the highly metastatic HA22T liver cancer cell migration and invasion effects through PP2A activation.


Molecular and Cellular Biochemistry | 2015

ZAK induces cardiomyocyte hypertrophy and brain natriuretic peptide expression via p38/JNK signaling and GATA4/c-Jun transcriptional factor activation

You Liang Hsieh; Ying Lan Tsai; Marthandam Asokan Shibu; Chia chi Su; Li Chin Chung; Peiying Pai; Chia-Hua Kuo; Yu Lan Yeh; Vijaya Padma Viswanadha; Chih Yang Huang

Abstract Cardiomyocyte hypertrophy is an adaptive response of heart to various stress conditions. During the period of stress accumulation, transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Our previous studies found that ZAK, a sterile alpha motif and leucine zipper containing kinase, was highly expressed in infarcted human hearts and demonstrated that overexpression of ZAK induced cardiac hypertrophy. This study evaluates, cellular events associated with the expression of two doxycycline (Dox) inducible Tet-on ZAK expression systems, a Tet-on ZAK WT (wild-type), and a Tet-on ZAK DN (mutant, Dominant-negative form) in H9c2 myoblast cells; Tet-on ZAK WT was found to increase cell size and hypertrophic marker BNP in a dose-dependent manner. To ascertain the mechanism of ZAK-mediated hypertrophy, expression analysis with various inhibitors of the related upstream and downstream proteins was performed. Tet-on ZAK WT expression triggered the p38 and JNK pathway and also activated the expression and nuclear translocation of p-GATA4 and p-c-Jun transcription factors, without the involvement of p-ERK or NFATc3. However, Tet-on ZAK DN showed no effect on the p38 and JNK signaling cascade. The results showed that the inhibitors of JNK1/2 and p38 significantly suppressed ZAK-induced BNP expression. The results show the role of ZAK and/or the ZAK downstream events such as JNK and p38 phosphorylation, c-Jun, and GATA-4 nuclear translocation in cardiac hypertrophy. ZAK and/or the ZAK downstream p38, and JNK pathway could therefore be potential targets to ameliorate cardiac hypertrophy symptoms in ZAK-overexpressed patients.


International Journal of Medical Sciences | 2016

Multi-Strain Probiotics Inhibit Cardiac Myopathies and Autophagy to Prevent Heart Injury in High-Fat Diet-Fed Rats

Chao Hung Lai; Cheng Chih Tsai; Wei Wen Kuo; Tsung Jung Ho; Cecilia Hsuan Day; Peiying Pai; Li Chin Chung; Chun‑Chih Huang; Hsueh Fang Wang; Po Hsiang Liao; Chih Yang Huang

High-fat diets induce obesity, leading to cardiomyocyte fibrosis and autophagy imbalance. In addition, no previous studies have indicated that probiotics have potential health effects associated with cardiac fibrosis and autophagy in obese rats. This study investigates the effects of probiotics on high-fat (HF) diet-induced obesity and cardiac fibrosis and autophagy in rat hearts. Eight-week-old male Wistar rats were separated randomly into five equally sized experimental groups: Normal diet (control) and high-fat (HF) diet groups and groups fed a high-fat diet supplemented with low (HL), medium (HM) or high (HH) doses of multi-strain probiotic powders. These experiments were designed for an 8-week trial period. The myocardial architecture of the left ventricle was evaluated using Massons trichrome staining and immunohistochemistry staining. Key probiotics-related pathway molecules were analyzed using western blotting. Abnormal myocardial architecture and enlarged interstitial spaces were observed in HF hearts. These interstitial spaces were significantly decreased in groups provided with multi-strain probiotics compared with HF hearts. Western blot analysis demonstrated that key components of the TGF/MMP2/MMP9 fibrosis pathways and ERK5/uPA/ANP cardiac hypertrophy pathways were significantly suppressed in probiotic groups compared to the HF group. Autophagy balance is very important in cardiomyocytes. In this study, we observed that the beclin-1/LC3B/Atg7 autophagy pathway in HF was increased after probiotic supplementation was significantly decreased. Together, these results suggest that oral administration of probiotics may attenuate cardiomyocyte fibrosis and cardiac hypertrophy and the autophagy-signaling pathway in obese rats.


World Journal of Gastroenterology | 2014

Estradiol agonists inhibit human LoVo colorectal-cancer cell proliferation and migration through p53

Hsi Hsien Hsu; Wei Wen Kuo; Da Tong Ju; Yu Lan Yeh; Chuan Chou Tu; Ying Lan Tsai; Chia Yao Shen; Sheng Huang Chang; Li Chin Chung; Chih Yang Huang

AIM To investigate the effects of 17β-estradiol via estrogen receptors (ER) or direct administration of ER agonists on human colorectal cancer. METHODS LoVo cells were established from the Bioresource Collection and Research Center and cultured in phenol red-free DMEM (Sigma, United States). To investigate the effects of E2 and/or ER selective agonists on cellular proliferation, LoVo colorectal cells were treated with E2 or ER-selective agonists for 24 h and 48 h and subjected to the MTT (Sigma) assay to find the concentration. And investigate the effects of E2 and/or ER selective agonists on cell used western immunoblotting to find out the diversification of signaling pathways. In order to observe motility and migration the wound healing assay and a transwell chamber (Neuro Probe) plate were tased. For a quantitative measure, we counted the number of migrating cells to the wound area post-wounding for 24 h. We further examined the cellular migration-regulating factors urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and matrix metalloproteinase (MMP)-9 in human LoVo cells so gelatin zymography that we used and gelatinolytic activity was visualized by Coomassie blue staining. And these results are presented as means ± SE, and statistical comparisons were made using Students t-test. RESULTS The structure was first compared with E2 and ER agonists. We then treated the LoVo cells with E2 and ER agonists (10(-8) mol/L) for 24 h and 48 h and subsequently measured the cell viability using MTT assay. Our results showed that treatment with 17β-estradiol and/or ER agonists in human LoVo colorectal cancer cells activated p53 and then up-regulated p21 and p27 protein levels, subsequently inhibiting the downstream target gene, cyclin D1, which regulates cell proliferation. Taken together, our findings demonstrate the anti-tumorigenesis effects of 17β-estradiol and/or ER agonists and suggest that these compounds may prove to be a potential alternative therapy in the treatment of human colorectal cancer. These results demonstrate that 17β-estradiol and/or ER agonists downregulate migration-related proteins through the p53 signaling pathway in human LoVo colorectal cancer cells. These findings suggest that p53 plays a critical role in the 17β-estradiol and/or ER agonist-mediated protective activity against colorectal cancer progression. In addition, 17β-estradiol and/or ER agonists dramatically inhibited cell migration and reduced the expression of u-PA, t-PA and MMP-9 as well as MMP-2/9 activity in LoVo cells, which regulate cell metastasis. Moreover, we observed that pretreatment with a p53 inhibitor significantly blocked the anti-migration effects of E2 and/or ER agonists on LoVo cells. That E2 and/or ER agonists may impair LoVo cell migration by modulating migration-related factors via the p53 tumor suppressor gene. CONCLUSION Direct ER treatment may prove to be an attractive alternative therapy in the treatment of human colorectal tumors in the future.


Molecular and Cellular Biochemistry | 2014

Gelsolin (GSN) induces cardiomyocyte hypertrophy and BNP expression via p38 signaling and GATA-4 transcriptional factor activation

Wei Syun Hu; Tsung Jung Ho; Peiying Pai; Li Chin Chung; Chia-Hua Kuo; Sheng Huang Chang; Fuu Jen Tsai; Chang Hai Tsai; Yu Chi Jie; Ying Ming Liou; Chih Yang Huang

AbstractCardiomyocyte hypertrophy is an adaptive response of the heart to various types of stress. During the period of stress accumulation, the transition from physiological hypertrophy to pathological hypertrophy results in the promotion of heart failure. Gelsolin (GSN) is a member of the actin-binding proteins, which regulate dynamic actin filament organization by severing and capping. Moreover, GSN also regulates cell morphology, differentiation, movement, and apoptosis. In this study, we used H9c2 and H9c2-GSN stable clones in an attempt to understand the mechanisms of GSN overexpression in cardiomyocytes. These data showed that the overexpression of GSN in H9c2-induced cardiac hypertrophy and increased the pathological hypertrophy markers atrial natriuretic peptide brain natriuretic peptide. Furthermore, we found that E-cadherin expression decreased with the overexpression of GSN in H9c2, but β-catenin expression increased. These data presume that the cytoskeleton is loose. Further, previous studies show that the mitogen-activated protein kinase pathway can induce cardiac hypertrophy. Our data showed that p-p38 expression increased with the overexpression of GSN in H9c2, and the transcription factor p-GATA4 expression also increased, suggesting that the overexpression of GSN in H9c2-induced cardiac hypertrophy seemed to be regulated by the p38/GATA4 pathway. Moreover, we used both the p38 inhibitor (SB203580) and GSN siRNA to confirm our conjecture. We found that both of these factors significantly suppressed gelsolin-induced cardiac hypertrophy through p38/GATA4 signaling pathway. Therefore, we predict that the gene silencing of GSN and/or the downstream blocking of GSN along the p38 pathway could be applied to ameliorate pathological cardiac hypertrophy in the future.


Journal of Cellular Physiology | 2018

The multifaceted link between inflammation and human diseases

Peramaiyan Rajendran; Ya Fang Chen; Yu Feng Chen; Li Chin Chung; Shanmugam Tamilselvi; Chia Yao Shen; Cecilia Hsuan Day; Ray Jade Chen; Vijaya Padma Viswanadha; Wei Wen Kuo; Chih Yang Huang

Increasing reports on epidemiological, diagnostic, and clinical studies suggest that dysfunction of the inflammatory reaction results in chronic illnesses such as cancer, arthritis, arteriosclerosis, neurological disorders, liver diseases, and renal disorders. Chronic inflammation might progress if injurious agent persists; however, more typically than not, the response is chronic from the start. Distinct to most changes in acute inflammation, chronic inflammation is characterized by the infiltration of damaged tissue by mononuclear cells like macrophages, lymphocytes, and plasma cells, in addition to tissue destruction and attempts to repair. Phagocytes are the key players in the chronic inflammatory response. However, the important drawback is the activation of pathological phagocytes, which might result from continued tissue damage and lead to harmful diseases. The longer the inflammation persists, the greater the chance for the establishment of human diseases. The aim of this review was to focus on advances in the understanding of chronic inflammation and to summarize the impact and involvement of inflammatory agents in certain human diseases.


Chinese Journal of Physiology | 2015

Nerve Regeneration Potential of Protocatechuic Acid in RSC96 Schwann Cells by Induction of Cellular Proliferation and Migration through IGF-IR-PI3K-Akt Signaling.

Da Tong Ju; Hung En Liao; Marthandam Asokan Shibu; Tsung Jung Ho; Viswanadha Vijaya Padma; Fuu Jen Tsai; Li Chin Chung; Cecilia Hsuan Day; Chien Chung Lin; Chih Yang Huang

Peripheral nerve injuries, caused by accidental trauma, acute compression or surgery, often result in temporary or life-long neuronal dysfunctions and inflict great economic or social burdens on the patients. Nerve cell proliferation is an essential process to restore injured nerves of adults. Schwann cells play a crucial role in endogenous repair of peripheral nerves due to their ability to proliferate, migrate and provide trophic support to axons via expression of various neurotrophic factors, such as the nerve growth factor (NGF), especially after nerve injury. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid, isolated from the kernels of Alpinia oxyphylla Miq (AOF), a traditional Chinese herbal medicine the fruits of which are widely used as a tonic, aphrodisiac, anti-salivation and anti-diarrheatic. This study investigated the molecular mechanisms by which PCA induces Schwann cell proliferation by activating IGF-IR-PI3K-Akt pathway. Treatment with PCA induces phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3 kinase/serine - threonine kinase (PI3K/Akt) pathway, and activates expression of cell nuclear antigen (PCNA) in a dose-dependent manner. Cell cycle analysis after 18 h of treatment showed that proliferation of the RSC96 cells was enhanced by PCA treatment. The PCA induced proliferation was accompanied by modulation in the expressions of cell cycle proteins cyclin D1, cyclin E and cyclin A. Knockdown of PI3K using small interfering RNA (siRNA) and inhibition of IGF-IR receptor resulted in the reduction in cell survival proteins. The results collectively showed that PCA treatment promoted cell proliferation and cell survival via IGF-I signaling.


International Journal of Molecular Sciences | 2017

E2/ER β enhances calcineurin protein degradation and PI3k/Akt/MDM2 signal transduction to inhibit ISO-induced myocardial cell apoptosis

Kuan Ho Lin; Wei Wen Kuo; Marthandam Asokan Shibu; Cecilia Hsuan Day; You Liang Hsieh; Li Chin Chung; Ray Jade Chen; Su Ying Wen; Vijaya Padma Viswanadha; Chih Yang Huang

Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2), for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs). In addition, protein phosphatase such as protein phosphatase 1 (PP1) and calcineurin (PP2B) are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO)-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.


Chinese Journal of Physiology | 2017

Effects of Garlic Oil on Interleukin-6 Mediated Cardiac Hypertrophy in Hypercholesterol-Fed Hamsters

You Liang Hsieh; Peiying Pai; Tsung Jung Ho; Li Chin Chung; Yi Chang Cheng; Chieh Hsi Wu; Ming Jen Fan; Cecilia Hsuan Day; Chia Yao Shen; Chih Yang Huang

Hypercholesterol diets are the major causes of cardiac hypertrophy and various cardiac disorders. The purpose of this study is to evaluate the effects of garlic oil on cardiac hypertrophy induced by hypercholesterol diets. Golden Syrian hamsters were fed with 2% cholesterol or 2% cholesterol plus 1% garlic oil for 2 months. Heart architecture changes were measured by hematoxylin-eosin staining and the molecular mechanism was determined by western blotting. Garlic oil reduced whole-heart weight to bone weight ratio, and left ventricle weight to bone weight ratio in the cholesterol-fed group. Moreover, the garlic oil group showed significantly reduced interleukin-6, phosphorylated (p)-extracellular signal-regulated kinase-5, p-mitogen-activated protein kinase-5, calcineurin, nuclear transcription factor of nuclear factor of activated T-cells-3 and p-GATA binding protein 4 when compared with the cholesterol group. However, no changes were observed in gp-130, signal transducer and activator of transcription-3, p-P38 and p-Jun N-terminal kinases protein levels in all groups. The results show that garlic oil may be useful in the treatment of hypertrophy-associated cardiovascular diseases.

Collaboration


Dive into the Li Chin Chung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwo Ping Jong

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar

Hsi Hsien Hsu

Mackay Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Ray Jade Chen

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Ying Lan Tsai

National Taiwan Sport University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Da Tong Ju

National Defense Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge