Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiaki Kusumoto is active.

Publication


Featured researches published by Chiaki Kusumoto.


Journal of Pineal Research | 2006

Mechanisms of protection by melatonin against acetaminophen-induced liver injury in mice

Tatsuya Matsura; Tadashi Nishida; Aki Togawa; Shunsuke Horie; Chiaki Kusumoto; Shuzo Ohata; Junya Nakada; Yuichi Ishibe; Kazuo Yamada; Yoshiji Ohta

Abstract:  The present study was performed to determine whether melatonin protects mouse liver against severe damage induced by acetaminophen (APAP) administration and where melatonin primarily functions in the metabolic pathway of APAP to protect mouse liver against APAP‐induced injury. Treatment of mice with melatonin (50 or 100 mg/kg, p.o.) 8 or 4 hr before APAP administration (750 mg/kg, p.o.) suppressed the increase in plasma alanine aminotransferase and aspartate aminotransferase activities in a dose‐ and a time‐dependent manner. Melatonin treatment (100 mg/kg, p.o.) 4 hr before APAP administration remarkably inhibited centrilobular hepatic necrosis with inflammatory cell infiltration and increases in hepatic lipid peroxidation and myeloperoxidase activity, an index of tissue neutrophil infiltration, as well as release of nitric oxide and interleukin‐6 into blood circulation at 9 hr after APAP administration. However, melatonin neither affected hepatic reduced glutathione (GSH) content nor spared hepatic GSH consumption by APAP treatment. Moreover, pretreatment with melatonin 4 hr before APAP administration did not influence the induction of hepatic heat shock protein 70 (HSP70) by APAP and melatonin alone did not induce HSP70 in mouse liver. These results indicate that exogenously administered melatonin exhibits a potent hepatoprotective effect against APAP‐induced hepatic damage probably downstream of the activity of cytochrome P450 2E1, which works upstream of GSH conjugation in the pathway of APAP metabolism, via its anti‐nitrosative and anti‐inflammatory activities in addition to its antioxidant activity.


Journal of Clinical Biochemistry and Nutrition | 2007

Geranylgeranylacetone ameliorates inflammatory response to lipopolysaccharide (LPS) in murine macrophages: inhibition of LPS binding to the cell surface.

Shinsuke Mochida; Tatsuya Matsura; Atsushi Yamashita; Shunsuke Horie; Shuzo Ohata; Chiaki Kusumoto; Tadashi Nishida; Yukari Minami; Yoshimi Inagaki; Yuichi Ishibe; Junya Nakada; Yoshiji Ohta; Kazuo Yamada

We investigated whether pretreatment with geranylgeranylacetone (GGA), a potent heat shock protein (HSP) inducer, could inhibit proinflammatory cytokine liberation and nitric oxide (NO) production in lipopolysaccharide (LPS)-treated murine macrophages. The levels of NO and tumor necrosis factor-α (TNF-α) released from murine macrophage RAW 264 cells were increased dose- and time-dependently following treatment with LPS (1 µg/ml). GGA (80 µM) treatment 2 h before LPS addition significantly suppressed TNF-α and NO productions at 12 h and 24 h after LPS, respectively, indicating that GGA inhibits activation of macrophages. However, replacement by fresh culture medium before LPS treatment abolished the inhibitory effect of GGA on NO production in LPS-treated cells. Furthermore, GGA inhibited both HSP70 and inducible NO synthase expressions induced by LPS treatment despite an HSP inducer. When it was examined whether GGA interacts with LPS and/or affects expression of Toll-like receptor 4 (TLR4) and CD14 on the cell surface, GGA inhibited the binding of LPS to the cell surface, while GGA did not affect TLR4 and CD14 expressions. These results indicate that GGA suppresses the binding of LPS to the cell surface of macrophages, resulting in inhibiting signal transduction downstream of TLR4.


Journal of Clinical Biochemistry and Nutrition | 2012

Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells

Mari Teraoka; Kazuhiro Nakaso; Chiaki Kusumoto; Satoshi Katano; Naoko Tajima; Atsushi Yamashita; Teppei Zushi; Satoru Ito; Tatsuya Matsura

Parkinson’s disease is a major neurodegenerative disease involving the selective degeneration of dopaminergic neurons and α-synuclein containing Lewy bodies formation in the substantia nigra. Although α-synuclein is a key molecule for both dopaminergic neuron death and the formation of inclusion bodies, the mechanism of α-synuclein induction of Parkinson’s disease-related pathogenesis is not understood. In the present study, we found that the interaction between dopamine and α-synuclein requires the oxidation of dopamine. Furthermore, we examined the protective effect of chlorogenic acid, a major polyphenol contained in coffee, against α-syn and dopamine-related toxicity. Chlorogenic acid inhibits several DA/α-synuclein-related phenomenon, including the oxidation of dopamine, the interaction of oxidized dopamine with α-synuclein, and the oligomerization of α-synuclein under dopamine existing conditions in vitro. Finally, we showed that the cytoprotective effect against α-synuclein-related toxicity in PC12 cells that can be controlled by the Tet-Off system. Although the induction of α-synuclein in catecholaminergic PC12 cells causes a decrease in cell viability, chlorogenic acid rescued this cytotoxicity significantly in a dose dependent manner. These results suggest that the interaction of oxidized DA with α-synuclein may be a novel therapeutic target for Parkinson’s disease, and polyphenols, including chlorogenic acid, are candidates as protective and preventive agents for Parkinson’s disease onset.


Journal of Clinical Biochemistry and Nutrition | 2009

Zinc Supplementation with Polaprezinc Protects Mouse Hepatocytes against Acetaminophen-Induced Toxicity via Induction of Heat Shock Protein 70

Tadashi Nishida; Shuzo Ohata; Chiaki Kusumoto; Shinsuke Mochida; Junya Nakada; Yoshimi Inagaki; Yoshiji Ohta; Tatsuya Matsura

Polaprezinc, a chelate compound consisting of zinc and l-carnosine, is clinically used as a medicine for gastric ulcers. It has been shown that induction of heat shock protein (HSP) is involved in protective effects of polaprezinc against gastric mucosal injury. In the present study, we investigated whether polaprezinc and its components could induce HSP70 and prevent acetaminophen (APAP) toxicity in mouse primary cultured hepatocytes. Hepatocytes were treated with polaprezinc, zinc sulfate or l-carnosine at the concentration of 100 µM for 9 h, and then exposed to 10 mM APAP. Polaprezinc or zinc sulfate increased cellular HSP70 expression. However, l-carnosine had no influence on it. Pretreatment of the cells with polaprezinc or zinc sulfate significantly suppressed cell death as well as cellular lipid peroxidation after APAP treatment. In contrast, pretreatment with polaprezinc did not affect decrease in intracellular glutathione after APAP. Furthermore, treatment with KNK437, an HSP inhibitor, attenuated increase in HSP70 expression induced by polaprezinc, and abolished protective effect of polaprezinc on cell death after APAP. These results suggested that polaprezinc, in particular its zinc component, induces HSP70 expression in mouse primary cultured hepatocytes, and inhibits lipid peroxidation after APAP treatment, resulting in protection against APAP toxicity.


Journal of Clinical Biochemistry and Nutrition | 2010

Polaprezinc Protects Mice against Endotoxin Shock

Shuzo Ohata; Chihiro Moriyama; Atsushi Yamashita; Tadashi Nishida; Chiaki Kusumoto; Shinsuke Mochida; Yukari Minami; Junya Nakada; Kohei Shomori; Yoshimi Inagaki; Yoshiji Ohta; Tatsuya Matsura

Polaprezinc (PZ), a chelate compound consisting of zinc and l-carnosine (Car), is an anti-ulcer drug developed in Japan. In the present study, we investigated whether PZ suppresses mortality, pulmonary inflammation, and plasma nitric oxide (NO) and tumor necrosis factor (TNF)-α levels in endotoxin shock mice after peritoneal injection of lipopolysaccharide (LPS), and how PZ protects against LPS-induced endotoxin shock. PZ pretreatment inhibited the decrease in the survival rate of mice after LPS injection. PZ inhibited the increases in plasma NO as well as TNF-α after LPS. Compatibly, PZ suppressed LPS-induced inducible NO synthase mRNA transcription in the mouse lungs. PZ also improved LPS-induced lung injury. However, PZ did not enhance the induction of heat shock protein (HSP) 70 in the mouse lungs after LPS. Pretreatment of RAW264 cells with PZ suppressed the production of NO and TNF-α after LPS addition. This inhibition likely resulted from the inhibitory effect of PZ on LPS-mediated nuclear factor-κB (NF-κB) activation. Zinc sulfate, but not Car, suppressed NO production after LPS. These results indicate that PZ, in particular its zinc subcomponent, inhibits LPS-induced endotoxin shock via the inhibition of NF-κB activation and subsequent induction of proinflammatory products such as NO and TNF-α, but not HSP induction.


Journal of Clinical Biochemistry and Nutrition | 2017

Compound 48/80, a mast cell degranulator, causes oxidative damage by enhancing vitamin C synthesis via reduced glutathione depletion and lipid peroxidation through neutrophil infiltration in rat livers

Yosihiji Ohta; Koji Yashiro; Koji Ohashi; Yosuke Horikoshi; Chiaki Kusumoto; Tatsuya Matsura

In this study, we examined whether compound 48/80 (C48/80), a mast cell degranulator, causes hepatic oxidative damage in rats. Serum and liver biochemical parameters were determined 0.5, 3 or 6 h after a single treatment with C48/80 (0.75 mg/kg). Serum histamine and serotonin levels increased 0.5 h after C48/80 treatment but diminished thereafter. Increases in serum vitamin C (VC) and transaminases and hepatic hydrogen peroxide, lipid peroxide, and myeloperoxidase levels and a decrease in hepatic reduced glutathione level occurred 0.5 h after C48/80 treatment and further proceeded at 3 h, but these changes diminished at 6 h. Serum lipid peroxide and hepatic VC levels increased 3 h after C48/80 treatment. Hepatic glycogen level decreased 0.5 h after C48/80 treatment and further decreased at 3 h. Pre-administered ketotifen diminished all these changes found at 3 h after treatment, while pre-administered NPC 14686 diminished these changes except changes in serum histamine and serotonin levels. Hepatocellular apoptosis observed at 3 h after C48/80 treatment was attenuated by pre-administered ketotifen and NPC 14686. These results indicate that C48/80 causes oxidative damage by enhancing VC synthesis via reduced glutathione depletion-dependent glycogenolysis and lipid peroxidation through neutrophil infiltration following mast cell degranulation in rat livers.


Journal of Nutritional Science and Vitaminology | 2015

Effect of Dietary Vitamin E Supplementation on Liver Oxidative Damage in Rats with Water-Immersion Restraint Stress.

Yoshiji Ohta; Koji Yashiro; Koji Ohashi; Yosuke Horikoshi; Chiaki Kusumoto; Tatsuya Matsura; Kenji Fukuzawa

We examined how dietary supplementation of vitamin E protects against liver oxidative damage in rats with water-immersion restraint stress (WIRS). Before WIRS exposure, rats received a normal diet (ND) or vitamin E-supplemented diet (VESD) (500 IU α-tocopherol/kg diet) at a mean dose of 15 g/animal/d for 4 wk. The two diet groups had serum transaminases and lactate dehydrogenase activities and adrenocorticotropic hormone, corticosterone, and glucose levels to a similar extent. VESD-fed rats had higher liver α-tocopherol concentrations and lower liver ascorbic acid, total coenzyme Q9 (CoQ9), reduced CoQ9, reduced CoQ10, and lipid peroxide (LPO) concentrations than ND-fed rats. When the two diet groups were exposed to 6 h of WIRS, the serum liver cell damage index enzyme activities increased more greatly in ND-fed rats than in VESD-fed rats but the serum stress marker levels increased to a similar extent. The WIRS exposure caused no change in liver LPO concentration with the further increase in liver α-tocopherol concentration in VESD-fed rats but increased liver LPO concentration without changing liver α-tocopherol concentration in ND-fed rats. Upon the WIRS exposure, liver reduced glutathione concentration decreased with the further decrease in liver ascorbic acid concentration in VESD-fed rats and those concentrations decreased in ND-fed rats. The WIRS exposure recovered the decreased liver total CoQ9 and reduced CoQ9 concentrations in VESD-fed rats but decreased liver total CoQ9, reduced CoQ9, and reduced CoQ10 concentrations in ND-fed rats. These results indicate that dietary vitamin E supplementation protects against liver oxidative damage without affecting the stress response in rats with WIRS.


Biofactors | 2018

α‐Tocopherol promotes HaCaT keratinocyte wound repair through the regulation of polarity proteins leading to the polarized cell migration

Yosuke Horikoshi; Kouki Kamizaki; Takehiko Hanaki; Masaki Morimoto; Yoshinori Kitagawa; Kazuhiro Nakaso; Chiaki Kusumoto; Tatsuya Matsura

In many developed countries including Japan, how to care the bedridden elderly people with chronic wounds such as decubitus becomes one of the most concerned issues. Although antioxidant micronutrients including vitamin E, especially α-tocopherol (α-Toc), are reported to shorten a period of wound closure, the promoting effect of α-Toc on wound healing independent of its antioxidant activity remains to be fully elucidated. The aim of this study was to examine whether α-Toc affects wound-mediated HaCaT keratinocyte polarization process including the recruitment of polarity regulating proteins, leading to wound repair independently of its antioxidant activity. We investigated the effects of α-Toc and other antioxidants such as Trolox, a cell-permeable α-Toc analog on the migration, proliferation, and cell polarization of HaCaT keratinocytes after wounding. We analyzed the localization and complex formation of polarity proteins, partitioning defective 3 (Par3), and atypical protein kinase C (aPKC), and aPKC activity by immunohistochemistry, immunoprecipitation analyses, and in vitro kinase assays, respectively. α-Toc but not other antioxidants enhanced the wound closure and cell polarization in HaCaT keratinocytes after wounding. α-Toc regulated the localization and complex formation of Par3 and aPKC during wound healing. Knockdown of aPKC or Par3 abrogated α-Toc-mediated promotion of the wound closure and cell polarization in HaCaT keratinocytes. Furthermore, aPKC kinase activity was significantly increased in α-Toc-treated cells through activation of phosphatidylinositol 3-kinase/Akt signaling pathway. These results suggest that α-Toc promotes HaCaT keratinocyte wound repair by regulating the aPKC kinase activity and the formation of aPKC-Par3 complex.


Chemical Research in Toxicology | 2004

Endogenously generated hydrogen peroxide is required for execution of melphalan-induced apoptosis as well as oxidation and externalization of phosphatidylserine.

Tatsuya Matsura; Masachika Kai; Jianfei Jiang; Hareesh Babu; Vidisha Kini; Chiaki Kusumoto; Kazuo Yamada; Valerian E. Kagan


Yonago Acta Medica | 2012

Mechanisms underlying production and externalization of oxidized phosphatidylserine in apoptosis: involvement of mitochondria.

Atsushi Yamashita; Hitoshi Morikawa; Naoko Tajima; Mari Teraoka; Chiaki Kusumoto; Kazuhiro Nakaso; Tatsuya Matsura

Collaboration


Dive into the Chiaki Kusumoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiji Ohta

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Yashiro

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge