Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Bardella is active.

Publication


Featured researches published by Chiara Bardella.


Biochimica et Biophysica Acta | 2011

SDH mutations in cancer.

Chiara Bardella; Patrick J. Pollard; Ian Tomlinson

The SDHA, SDHB, SDHC, SDHD genes encode the four subunits of succinate dehydrogenase (SDH; mitochondrial complex II), a mitochondrial enzyme involved in two essential energy-producing metabolic processes of the cell, the Krebs cycle and the electron transport chain. Germline loss-of-function mutations in any of the SDH genes or assembly factor (SDHAF2) cause hereditary paraganglioma/phaeochromocytoma syndrome (HPGL/PCC) through a mechanism which is largely unknown. Owing to the central function of SDH in cellular energy metabolism it is important to understand its role in tumor suppression. Here is reported an overview of genetics, clinical and molecular progress recently performed in understanding the basis of HPGL/PCC tumorigenesis.


The Journal of Pathology | 2011

Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status

Chiara Bardella; Mona El-Bahrawy; Norma Frizzell; Julie Adam; Nicola Ternette; Emine Hatipoglu; Kimberley Howarth; Linda O'Flaherty; Ian S. Roberts; Gareth D. H. Turner; Jennifer M. Taylor; Konstantinos Giaslakiotis; Valentine M. Macaulay; Adrian L. Harris; Ashish Chandra; Heli J. Lehtonen; Virpi Launonen; Lauri A. Aaltonen; Christopher W. Pugh; Radu Mihai; David C. Trudgian; Benedikt M. Kessler; John W. Baynes; Peter J. Ratcliffe; Ian Tomlinson; Patrick J. Pollard

Germline mutations in the FH gene encoding the Krebs cycle enzyme fumarate hydratase predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. FH‐deficient cells and tissues accumulate high levels of fumarate, which may act as an oncometabolite and contribute to tumourigenesis. A recently proposed role for fumarate in the covalent modification of cysteine residues to S‐(2‐succinyl) cysteine (2SC) (termed protein succination) prompted us to assess 2SC levels in our existing models of HLRCC. Herein, using a previously characterized antibody against 2SC, we show that genetic ablation of FH causes high levels of protein succination. We next hypothesized that immunohistochemistry for 2SC would serve as a metabolic biomarker for the in situ detection of FH‐deficient tissues. Robust detection of 2SC was observed in Fh1 (murine FH)‐deficient renal cysts and in a retrospective series of HLRCC tumours (n = 16) with established FH mutations. Importantly, 2SC was undetectable in normal tissues (n = 200) and tumour types not associated with HLRCC (n = 1342). In a prospective evaluation of cases referred for genetic testing for HLRCC, the presence of 2SC‐modified proteins (2SCP) correctly predicted genetic alterations in FH in every case. In two series of unselected type II papillary renal cancer (PRCC), prospectively analysed by 2SCP staining followed by genetic analysis, the biomarker accurately identified previously unsuspected FH mutations (2/33 and 1/36). The investigation of whether metabolites in other tumour types produce protein modification signature(s) that can be assayed using similar strategies will be of interest in future studies of cancer. Copyright


Nature Genetics | 2012

Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression

Johannes Schödel; Chiara Bardella; Lina Katrin Sciesielski; Jill M. Brown; Christopher W. Pugh; Veronica J. Buckle; Ian Tomlinson; Peter J. Ratcliffe; David R. Mole

Although genome-wide association studies (GWAS) have identified the existence of numerous population-based cancer susceptibility loci, mechanistic insights remain limited, particularly for intergenic polymorphisms. Here, we show that polymorphism at a remote intergenic region on chromosome 11q13.3, recently identified as a susceptibility locus for renal cell carcinoma, modulates the binding and function of hypoxia-inducible factor (HIF) at a previously unrecognized transcriptional enhancer of CCND1 (encoding cyclin D1) that is specific for renal cancers characterized by inactivation of the von Hippel–Lindau tumor suppressor (pVHL). The protective haplotype impairs binding of HIF-2, resulting in an allelic imbalance in cyclin D1 expression, thus affecting a link between hypoxia pathways and cell cycle control.


Nature Medicine | 2015

Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche

Hayley Davis; Shazia Irshad; Mukesh Bansal; Hannah Rafferty; Tatjana Boitsova; Chiara Bardella; Emma Jaeger; Annabelle Lewis; Luke Freeman-Mills; Francesc Castro Giner; Pedro Rodenas-Cuadrado; Sreelakshmi Mallappa; Susan K. Clark; Huw Thomas; Rosemary Jeffery; Richard Poulsom; Manuel Rodriguez-Justo; Marco Novelli; Runjan Chetty; Andrew Silver; Owen J. Sansom; Florian R. Greten; Lai Mun Wang; James E. East; Ian Tomlinson; Simon Leedham

Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.


Cancer Research | 2004

Truncated RON tyrosine kinase drives tumor cell progression and abrogates cell-cell adhesion through E-cadherin transcriptional repression

Chiara Bardella; Barbara Costa; Piera Maggiora; Salvatore Patanè; Martina Olivero; Guglielmina Nadia Ranzani; Michele De Bortoli; Paolo M. Comoglio; Maria Flavia Di Renzo

RON is a tyrosine kinase receptor that triggers scattering of normal cells and invasive growth of cancer cells on ligand binding. We identified a short RON mRNA, which is expressed in human lung, ovary, tissues of the gastrointestinal tract, and also in several human cancers, including ovarian carcinomas and cell lines from pancreatic carcinomas and leukemias. This transcript encodes a truncated protein (short-form RON; sf-RON), lacking most of the RON receptor extracellular domain but retaining the whole transmembrane and intracellular domains. Sf-RON shows strong intrinsic tyrosine kinase activity and is constitutively phosphorylated. Epithelial cells transduced with sf-RON display an aggressive phenotype; they shift to a nonepithelial morphology, are unable to form aggregates, grow faster in monolayer cultures, show anchorage-independent growth, and become motile. We show that in these cells, E-cadherin expression is lost through a dominant transcriptional repression pathway likely mediated by the transcriptional factor SLUG. Altogether, these data show that expression of a naturally occurring, constitutively active truncated RON kinase results in loss of epithelial phenotype and aggressive behavior and, thus, it might contribute to tumor progression.


Nature Communications | 2015

Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution

Michal Kovac; Carolina Navas; Stuart Horswell; M. Salm; Chiara Bardella; Andrew Rowan; Mark Stares; Francesc Castro-Giner; Rosalie Fisher; E. C de Bruin; Monika Kováčová; Maggie Gorman; Seiko Makino; J Williams; Emma Jaeger; Angela Jones; Km Howarth; James Larkin; L. M. Pickering; Martin Gore; David L. Nicol; Steven Hazell; Gordon Stamp; Tim O'Brien; Ben Challacombe; Nik Matthews; Benjamin Phillimore; Sharmin Begum; Adam Rabinowitz; Ignacio Varela

Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers. However, only ~10% of tumours harbour detectable pathogenic changes in any one driver gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches.


PLOS ONE | 2011

Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH Mutations in Glioblastoma

Daniel Krell; Mawuelikem Assoku; Malcolm Galloway; Paul Mulholland; Ian Tomlinson; Chiara Bardella

Isocitrate dehydrogenases (IDHs) catalyse oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). IDH1 functions in the cytosol and peroxisomes, whereas IDH2 and IDH3 are both localized in the mitochondria. Heterozygous somatic mutations in IDH1 occur at codon 132 in 70% of grade II–III gliomas and secondary glioblastomas (GBMs), and in 5% of primary GBMs. Mutations in IDH2 at codon 172 are present in grade II–III gliomas at a low frequency. IDH1 and IDH2 mutations cause both loss of normal enzyme function and gain-of-function, causing reduction of α-KG to D-2-hydroxyglutarate (D-2HG) which accumulates. Excess hydroxyglutarate (2HG) can also be caused by germline mutations in D- and L-2-hydroxyglutarate dehydrogenases (D2HGDH and L2HGDH). If loss of IDH function is critical for tumourigenesis, we might expect some tumours to acquire somatic IDH3 mutations. Alternatively, if 2HG accumulation is critical, some tumours might acquire somatic D2HGDH or L2HGDH mutations. We therefore screened 47 glioblastoma samples looking for changes in these genes. Although IDH1 R132H was identified in 12% of samples, no mutations were identified in any of the other genes. This suggests that mutations in IDH3, D2HGDH and L2HGDH do not occur at an appreciable frequency in GBM. One explanation is simply that mono-allelic IDH1 and IDH2 mutations occur more frequently by chance than the bi-allelic mutations expected at IDH3, D2HGDH and L2HGDH. Alternatively, both loss of IDH function and 2HG accumulation might be required for tumourigenesis, and only IDH1 and IDH2 mutations have these dual effects.


Future Oncology | 2013

IDH mutations in tumorigenesis and their potential role as novel therapeutic targets

Daniel Krell; Paul Mulholland; Adam E. Frampton; Jonathan Krell; Justin Stebbing; Chiara Bardella

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Somatic mutations in genes encoding IDH1 and IDH2 were first identified in glioma and subsequently in acute myeloid leukemia and other solid tumors. These heterozygous point mutations occur at the arginine residue of the enzymes active site and cause both loss of normal enzyme function and gain of function, causing reduction of α-KG to D-2-hydroxyglutarate, which accumulates. D-2-hydroxyglutarate may act as an oncometabolite through the inhibition of various α-KG-dependent enzymes, stimulating angiogenesis, histone modifications and aberrant DNA methylation. Possibly, IDH mutations may also cause oncogenic effects through dysregulation of the tricarboxylic acid cycle, or by increasing susceptibility to oxidative stress. Clinically, IDH mutations may be useful diagnostic, prognostic and predictive biomarkers, and it is anticipated that a better understanding of the pathogenesis of IDH mutations will enable IDH-directed therapies to be developed in the future.


Proceedings of the National Academy of Sciences of the United States of America | 2009

ERα as ligand-independent activator of CDH-1 regulates determination and maintenance of epithelial morphology in breast cancer cells

Maria Dafne Cardamone; Chiara Bardella; Arantxa Gutierrez; Luciano Di Croce; Michael G. Rosenfeld; Maria Flavia Di Renzo; Michele De Bortoli

Estrogen receptor α (ERα) and E-cadherin are primary markers of luminal epithelial breast cancer cells with E-cadherin being a main caretaker of the epithelial phenotype. E-cadherin repression is needed for cancer cells to acquire motile and invasive properties, and it is known that in ER-positive breast cancer cells, estrogen down-regulate E-cadherin gene transcription. We report here that ERα is bound to the E-cadherin promoter in both the presence and the complete absence of estrogen, suggesting an unexpected role for unliganded ERα in E-cadherin transcription. Indeed, our data reveal that activation by unliganded ERα and repression by estrogen-activated ERα require direct binding to a half-estrogen response element within the E-cadherin promoter and exchange from associated coactivators to corepressors. Therefore, these results suggest a pivotal role for unliganded ERα in controlling a fundamental caretaker of the epithelial phenotype in breast cancer cells. Here, we show that ERα-positive breast cancer T47D cells transduced with the sfRON kinase undergo a full epithelial–mesenchymal conversion and lose E-cadherin and ERα expression. Our data show that, although the E-cadherin gene becomes hypermethylated and heterochromatic, kinase inhibitors can restore E-cadherin expression, together with an epithelial morphology in an ERα-dependent fashion. Similarly, transfection of ERα, in the absence of ligands, was sufficient to restore E-cadherin transcription in both sfRON-T47D and other ERα-, E-cadherin-negative cells. Therefore, our results suggest a novel role for the ERα that plays the dual role of ligand-independent activator and ligand-dependent repressor of E-cadherin in breast cancer cells.


International Journal of Cancer | 2006

p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis

Nadia Coltella; Andrea Rasola; Elisa Nano; Chiara Bardella; Michela Fassetta; Nicoletta Filigheddu; Andrea Graziani; Paolo M. Comoglio; Maria Flavia Di Renzo

We recently showed that Hepatocyte Growth Factor (HGF), known as a survival factor, unexpectedly enhances apoptosis in human ovarian cancer cells treated with the front‐line chemotherapeutics cisplatin (CDDP) and paclitaxel (PTX). Here we demonstrate that this effect depends on the p38 mitogen‐activated kinase (MAPK). In fact, p38 MAPK activity is stimulated by HGF and further increased by the combined treatment with HGF and either CDDP or PTX. The expression of a dominant negative form of p38 MAPK abrogates apoptosis elicited by drugs, alone or in combination with HGF. HGF and drugs also activate the ERK1/2 MAPKs, the PI3K/AKT and the AKT substrate mTOR. However, activation of these survival pathways does not hinder the ability of HGF to enhance drug‐dependent apoptosis. Altogether data show that p38 MAPK is necessary for HGF sensitization of ovarian cancer cells to low‐doses of CDDP and PTX and might be sufficient to overcome activation of survival pathways. Therefore, the p38 MAPK pathway might be a suitable target to improve response to conventional chemotherapy in human ovarian cancer.

Collaboration


Dive into the Chiara Bardella's collaboration.

Top Co-Authors

Avatar

Ian Tomlinson

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hayley Davis

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Leedham

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Annabelle Lewis

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Daniel Krell

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Mulholland

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge