Chiara Castelli
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiara Castelli.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Piero Dalerba; Scott J. Dylla; In Kyung Park; Rui Liu; Xinhao Wang; Robert W. Cho; Timothy Hoey; Austin L. Gurney; Emina Huang; Diane M. Simeone; Andrew A. Shelton; Giorgio Parmiani; Chiara Castelli; Michael F. Clarke
Recent observations indicate that, in several types of human cancer, only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the “cancer stem cell” (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues, either primary tissues collected from surgical specimens or xenografts established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, were disaggregated into single-cell suspensions and analyzed by flow cytometry. Surface markers that displayed intratumor heterogeneous expression among epithelial cancer cells were selected for cell sorting and tumorigenicity experiments. Individual phenotypic cancer cell subsets were purified, and their tumor-initiating properties were investigated by injection in NOD/SCID mice. Our observations indicate that, in six of six human CRC tested, the ability to engraft in vivo in immunodeficient mice was restricted to a minority subpopulation of epithelial cell adhesion molecule (EpCAM)high/CD44+ epithelial cells. Tumors originated from EpCAMhigh/CD44+ cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Analysis of the surface molecule repertoire of EpCAMhigh/CD44+ cells led to the identification of CD166 as an additional differentially expressed marker, useful for CSC isolation in three of three CRC tested. These results validate the stem cell working model in human CRC and provide a highly robust surface marker profile for CRC stem cell isolation.
Journal of Clinical Oncology | 2007
Paola Filipazzi; Roberta Valenti; Veronica Huber; Lorenzo Pilla; Paola Canese; Manuela Iero; Chiara Castelli; Luigi Mariani; Giorgio Parmiani; Licia Rivoltini
PURPOSE Phenotypic and functional features of myeloid suppressor cells (MSC), which are known to serve as critical regulators of antitumor T-cell responses in tumor-bearing mice, are still poorly defined in human cancers. Here, we analyzed myeloid subsets with suppressive activity present in peripheral blood of metastatic melanoma patients and evaluated their modulation by a granulocyte-macrophage colony-stimulating factor (GM-CSF)--based antitumor vaccine. PATIENTS AND METHODS Stage IV metastatic melanoma patients (n = 16) vaccinated with autologous tumor-derived heat shock protein peptide complex gp96 (HSPPC-96) and low-dose GM-CSF provided pre- and post-treatment whole blood specimens. Peripheral-blood mononuclear cells (PBMCs) were analyzed by flow cytometry, separated into cellular subsets, and used for in vitro proliferation assays. PBMCs from stage-matched metastatic melanoma patients (n = 12) treated with non-GM-CSF-based vaccines (ie, HSPPC-96 alone or interferon alfa/melanoma-derived peptides) or sex- and age-matched healthy donors (n = 16) were also analyzed for comparison. RESULTS The lack of or low HLA-DR expression was found to identify a CD14+ cell subset highly suppressive of lymphocyte functions. CD14+HLA-DR-/lo cells were significantly expanded in all metastatic melanoma patients, whereas they were undetectable in healthy donors. Suppressive activity was mediated by transforming growth factor beta (TGF-beta), whereas no involvement of the arginase and inducible nitric oxide synthase pathways could be detected. CD14+HLA-DR-/lo cells, as well as spontaneous ex vivo release and plasma levels of TGF-beta, were augmented after administration of the HSPPC-96/GM-CSF vaccine. No enhancement of the CD14+-mediated suppressive activity was found in patients receiving non-GM-CSF-based vaccines. CONCLUSION CD14+HLA-DR-/lo cells exerting TGF-beta-mediated immune suppression represent a new subset of MSC potentially expandable by the administration of GM-CSF-based vaccines in metastatic melanoma patients.
Journal of Experimental Medicine | 2002
Giovanna Andreola; Licia Rivoltini; Chiara Castelli; Veronica Huber; Paola Perego; Paola Deho; Paola Squarcina; Paola Accornero; Francesco Lozupone; Luana Lugini; Annarita Stringaro; Agnese Molinari; Giuseppe Arancia; Massimo Gentile; Giorgio Parmiani; Stefano Fais
The hypothesis that FasL expression by tumor cells may impair the in vivo efficacy of antitumor immune responses, through a mechanism known as ‘Fas tumor counterattack,’ has been recently questioned, becoming the object of an intense debate based on conflicting results. Here we definitely show that FasL is indeed detectable in the cytoplasm of melanoma cells and its expression is confined to multivesicular bodies that contain melanosomes. In these structures FasL colocalizes with both melanosomal (i.e., gp100) and lysosomal (i.e., CD63) antigens. Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells. We additionally show that melanosome-containing multivesicular bodies degranulate extracellularly and release FasL-bearing microvesicles, that coexpress both gp100 and CD63 and retain their functional activity in triggering Fas-dependent apoptosis of lymphoid cells. Hence our data provide evidence for a novel mechanism potentially operating in Fas tumor counterattack through the secretion of subcellular particles expressing functional FasL. Such vesicles may form a sort of front line hindering lymphocytes and other immunocompetent cells from entering neoplastic lesions and exert their antitumor activity.
Cancer Immunology, Immunotherapy | 2005
Luisa Novellino; Chiara Castelli; Giorgio Parmiani
The technological advances occurred in the last few years have led to a great increase in the number of tumor associated antigens (TAA) that are currently available for clinical applications. In this review we provide a comprehensive list of human tumor antigens as reported in the literature updated at Feburary 2004. The list includes all T cell-defined epitopes, while excluding analogs or artificially modified epitopes, as well as virus-encoded and antibodies-recognized antigens. TAAs are listed in alphabetical order along with the epitope sequence and the HLA allele which restricts recognition by T cells. Data on the tissue distribution of each antigen are also provided together with an extensive bibliography that allows a rapid search for any additional information may be needed on each single antigen or epitope. Overall, the updated list is a database tool for clinicians, scientists and students who have an interest in the field of tumor immunology and immunotherapy.
Immunological Reviews | 2002
L. Rivoltini; Matteo Carrabba; Veronica Huber; Chiara Castelli; Luisa Novellino; Piero Dalerba; Roberta Mortarini; Giuseppe Arancia; Andrea Anichini; Stefano Fais; G. Parmiani
Summary: Tumor cells may express antigens which are recognized in a form of HLA/peptide complexes by T cells. The frequency at which different antigens are seen by T cells of melanoma patients and healthy donors was evaluated by human leukocyte antigen (HLA)/peptide tetramer technology which stains T cells bearing the specific receptor for a given epitope. By this technique, it was found that the majority of metastatic melanoma patients can recognize differentiation antigens (particularly Melan‐A/MART‐1), whereas such a recognition is scanty in the early phase of the disease and in healthy subjects. Despite the presence of melanoma‐specific T cells infiltrating tumor lesions, tumor rejection rarely occurs. Among the different mechanisms of such inefficient antitumor response, this review discusses the possible anti‐T‐cell counterattack mediated by FasL‐positive tumor cells, and shows that FasL is located in the cytoplasm of melanoma cells and is transported in the tumor microenvironment through the release of melanosomes. Additionally, mechanisms of suboptimal T cell activation through tumor cell expression of peptide analogs with antagonist activity are described, together with the possibility of overcoming such anergy induction by the usage of optimized tumor epitopes. Down‐modulation of HLA expression by target tumor cells and its multiple mechanisms is also considered. Finally, we discuss the role of inducible nitric oxide synthases in determining the inhibition of apoptosis in melanoma cells, which can make such tumor cells resistant to the T‐cell attack.
Journal of Immunology | 2007
Giorgio Parmiani; Annamaria De Filippo; Luisa Novellino; Chiara Castelli
The individual, unique tumor Ags, which characterize each single tumor, were described 50 years ago in rodents but their molecular characterization was limited to few of them and obtained during the last 20 years. Here we summarize the evidence for the existence and the biological role of such Ags in human tumors, although such evidence was provided only during the last 10 years and by a limited number of studies, a fact leading to a misrepresentation of unique Ags in human tumor immunology. This was also due to the increasing knowledge on the shared, self-human tumor Ags, which have been extensively used as cancer vaccines. In this review, we highlight the biological and clinical importance of unique Ags and suggest how they could be used in clinical studies aimed at assessing their immunogenic and clinical potential both in active and adoptive immunotherapy of human tumors.
Critical Reviews in Oncology Hematology | 2003
Piero Dalerba; Cristina Maccalli; Chiara Casati; Chiara Castelli; Giorgio Parmiani
This review critically discusses data on immunology of colorectal cancer, starting from pathology and molecular biology, and then considering the molecular characterisation of colon cancer antigens and the clinical trials of immunotherapy. A careful evaluation of histopathological studies on intra-epithelial infiltration by T cells in primary tumours, together with the analysis of HLA expression by colorectal cancer cells, suggest that anti-tumour T cell immune responses may take place in vivo in those patients, influencing prognosis and shaping the tumour immunological profile. Moreover, the molecular characterisation of tumour antigens expressed by colorectal carcinomas, together with improved understanding of mechanisms of the immune response and more sensitive methods for the in vivo detection of T cell responses, are now allowing researchers to design new and more effective vaccination protocols, with encouraging preliminary results. By drawing together the experimental evidence from different research fields, this review provides support for the concept that colorectal carcinoma is immunogenic and may reasonably be considered as a target for immunotherapy, and attempts to address critical issues and envisage future developments in this challenging research field.
Journal of Immunology | 2003
Licia Rivoltini; Chiara Castelli; Matteo Carrabba; V. Mazzaferro; Lorenzo Pilla; Veronica Huber; Jorgelina Coppa; Gianfrancesco Gallino; Carmen Scheibenbogen; Paola Squarcina; Agata Cova; Roberto Camerini; Jonathan J. Lewis; Pramod K. Srivastava; Giorgio Parmiani
Heat shock proteins (hsp) 96 play an essential role in protein metabolism and exert stimulatory activities on innate and adaptive immunity. Vaccination with tumor-derived hsp96 induces CD8+ T cell-mediated tumor regressions in different animal models. In this study, we show that hsp96 purified from human melanoma or colon carcinoma activate tumor- and Ag-specific T cells in vitro and expand them in vivo. HLA-A*0201-restricted CD8+ T cells recognizing Ags expressed in human melanoma (melanoma Ag recognized by T cell-1 (MART-1)/melanoma Ag A (Melan-A)) or colon carcinoma (carcinoembryonic Ag (CEA)/epithelial cell adhesion molecule (EpCAM)) were triggered to release IFN-γ and to mediate cytotoxic activity by HLA-A*0201-matched APCs pulsed with hsp96 purified from tumor cells expressing the relevant Ag. Such activation occurred in class I HLA-restricted fashion and appeared to be significantly higher than that achieved by direct peptide loading. Immunization with autologous tumor-derived hsp96 induced a significant increase in the recognition of MART-1/Melan-A27–35 in three of five HLA-A*0201 melanoma patients, and of CEA571–579 and EpCAM263–271 in two of five HLA-A*0201 colon carcinoma patients, respectively, as detected by ELISPOT and HLA/tetramer staining. These increments in Ag-specific T cell responses were associated with a favorable disease course after hsp96 vaccination. Altogether, these data provide evidence that hsp96 derived from human tumors can present antigenic peptides to CD8+ T cells and activate them both in vitro and in vivo, thus representing an important tool for vaccination in cancer patients.
Cancer Immunology, Immunotherapy | 2004
Chiara Castelli; Licia Rivoltini; Francesca Rini; Filiberto Belli; Alessandro Testori; Michele Maio; Vincenzo Mazzaferro; Jorgelina Coppa; Pramod K. Srivastava; Giorgio Parmiani
Heat shock proteins (HSPs) are a large family of proteins with different molecular weights and different intracellular localizations. These proteins undertake crucial functions in maintaining cell homeostasis, and therefore they have been conserved during evolution. Hsp70 and Grp94/gp96, due to their peptide chaperone capacity and their ability to actively interact with professional antigen-presenting cells (APCs), are also endowed with crucial immunological functions. The immunological properties of these proteins and their implications for vaccine in human cancer will be discussed. Immunological and clinical data of phase I/II studies in melanoma and colorectal cancer patients will be reviewed.
Journal of Immunology | 2010
Chiara Camisaschi; Chiara Casati; Francesca Rini; Michela Perego; Annamaria De Filippo; Frédéric Triebel; Giorgio Parmiani; Filiberto Belli; Licia Rivoltini; Chiara Castelli
Human natural regulatory CD4+ T cells comprise 5–10% of peripheral CD4+T cells. They constitutively express the IL-2Rα−chain (CD25) and the nuclear transcription Foxp3. These cells are heterogeneous and contain discrete subsets with distinct phenotypes and functions. Studies in mice report that LAG-3 has a complex role in T cell homeostasis and is expressed in CD4+CD25+ T regulatory cells. In this study, we explored the expression of LAG-3 in human CD4+ T cells and found that LAG-3 identifies a discrete subset of CD4+CD25highFoxp3+ T cells. This CD4+CD25highFoxp3+LAG-3+ population is preferentially expanded in the PBMCs of patients with cancer, in lymphocytes of tumor-invaded lymph nodes and in lymphocytes infiltrating visceral metastasis. Ex vivo analysis showed that CD4+CD25highFoxp3+LAG-3+ T cells are functionally active cells that release the immunosuppressive cytokines IL-10 and TGF-β1, but not IL-2. An in vitro suppression assay using CD4+CD25highLAG-3+ T cells sorted from in vitro expanded CD4+CD25high regulatory T cells showed that this subset of cells is endowed with potent suppressor activity that requires cell-to-cell contact. Our data show that LAG-3 defines an active CD4+CD25highFoxp3+ regulatory T cell subset whose frequency is enhanced in the PBMCs of patients with cancer and is expanded at tumor sites.