Chiara Gardin
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiara Gardin.
International Journal of Molecular Sciences | 2013
Chiara Rigo; Letizia Ferroni; Ilaria Tocco; Marco Roman; I. Munivrana; Chiara Gardin; Warren Raymond Lee Cairns; Vincenzo Vindigni; B. Azzena; Carlo Barbante; Barbara Zavan
In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment.
Journal of Translational Medicine | 2014
Eriberto Bressan; Letizia Ferroni; Chiara Gardin; Luca Sbricoli; Luca Gobbato; Francesco Saverio Ludovichetti; Ilaria Tocco; Amedeo Carraro; Adriano Piattelli; Barbara Zavan
Graphene is a flat monolayer of carbon atoms, arranged in a two-dimensional hexagonal structure, with extraordinary electrical, thermal, and physical properties. Moreover, the molecular structure of graphene can be chemically modified with molecules of interest to promote the development of high-performance devices. Although carbon derivatives have been extensively employed in industry and electronics, their use in regenerative medicine is still in an early phase. Study prove that graphene is highly biocompatible, has low toxicity and a large dosage loading capacity. This review describes the ability of graphene and its related materials to induce stem cells differentiation into osteogenic, neuronal, and adipogenic lineages.
International Journal of Dentistry | 2013
Eriberto Bressan; Letizia Ferroni; Chiara Gardin; Chiara Rigo; Michele Stocchero; Vincenzo Vindigni; Warren Raymond Lee Cairns; Barbara Zavan
Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps) have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.
Molecular and Cellular Biology | 2009
Pernilla von Nandelstadh; Mohamed Ismail; Chiara Gardin; Heli Suila; Ivano Zara; Anna Belgrano; Giorgio Valle; Olli Carpén; Georgine Faulkner
ABSTRACT Interactions between Z-disc proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disc components myotilin, ZASP/Cypher, and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We report here that the myotilin and the FATZ (calsarcin/myozenin) families share high homology at their final C-terminal five amino acids. This C-terminal E[ST][DE][DE]L motif is present almost exclusively in these families and is evolutionary conserved. We show by in vitro and in vivo studies that proteins from the myotilin and FATZ (calsarcin/myozenin) families interact via this novel type of class III PDZ binding motif with the PDZ domains of ZASP/Cypher and other Enigma family members: ALP, CLP-36, and RIL. We show that the interactions can be modulated by phosphorylation. Calmodulin-dependent kinase II phosphorylates the C terminus of FATZ-3 (calsarcin-3/myozenin-3) and myotilin, whereas PKA phosphorylates that of FATZ-1 (calsarcin-2/myozenin-1) and FATZ-2 (calsarcin-1/myozenin-1). This is the first report of a binding motif common to both the myotilin and the FATZ (calsarcin/myozenin) families that is specific for interactions with Enigma family members.
Biotechnology Advances | 2016
Giulia Brunello; Stefano Sivolella; Roberto Meneghello; Letizia Ferroni; Chiara Gardin; Adriano Piattelli; Barbara Zavan; Eriberto Bressan
Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.
Journal of Nanomaterials | 2012
Stefano Sivolella; Edoardo Stellini; Giulia Brunello; Chiara Gardin; Letizia Ferroni; Eriberto Bressan; Barbara Zavan
Silver (Ag) ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs) may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cells in vitro and in vivo in animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.
BioMed Research International | 2012
Alessandro Casadei; Roberta Epis; Letizia Ferroni; Ilaria Tocco; Chiara Gardin; Eriberto Bressan; Stefano Sivolella; Vincenzo Vindigni; Paolo Pinton; Giuseppe Mucci; Barbara Zavan
Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.
PLOS ONE | 2012
Eriberto Bressan; Letizia Ferroni; Chiara Gardin; Paolo Pinton; Edoardo Stellini; Daniele Botticelli; Stefano Sivolella; Barbara Zavan
The aim of the present work is to study how biological properties, such as proliferation and commitment ability, of human adult dental pulp stem cells (DPSCs) relate to the age of the donor. Human dental pulps were extracted from molars of healthy adult subjects aged 16 to >66 years. DPSCs were isolated and cultured in the presence of osteogenic, neurogenic, or vasculogenic differentiation medium. Proliferation ability was evaluated by determining doubling time, and commitment ability was evaluated by gene expression and morphological analyses for tissue-specific markers. The results confirm a well-defined proliferative ability for each donor age group at an early in vitro passage (p2). DPSCs from younger donors (up to 35 years) maintain this ability in long-term cultures (p8). Stem cells of all age donor groups maintain their commitment ability during in vitro culture. In vivo tests on the critical size defect repair process confirmed that DPSCs of all donor ages are a potent tool for bone tissue regeneration when mixed with 3D nanostructured scaffolds.
Advances in Biochemical Engineering \/ Biotechnology | 2012
Letizia Ferroni; Chiara Gardin; Ilaria Tocco; Roberta Epis; Alessandro Casadei; Vincenzo Vindigni; Giuseppe Mucci; Barbara Zavan
Adult human stem cells have gained progressive interest as a promising source of autologous cells to be used as therapeutic vehicles. Particularly, mesenchymal stem cells (MSCs) represent a great tool in regenerative medicine because of their ability to differentiate into a variety of specialized cells. Among adult tissues in which MSCs are resident, adipose tissue has shown clear advantages over other sources of MSCs (ease of surgical access, availability, and isolation), making adipose tissue the ideal large-scale source for research on clinical applications. Stem cells derived from the adipose tissue (adipose-derived stem cells = ADSCs) possess a great and unique regenerative potential: they are self-renewing and can differentiate along several mesenchymal tissue lineages (adipocytes, osteoblasts, myocytes, chondrocytes, endothelial cells, and cardiomyocytes), among which neuronal-like cells gained particular interest. In view of the promising clinical applications in tissue regeneration, research has been conducted towards the creation of a successful protocol for achieving cells with a well-defined neural phenotype from adipose tissue. The promising results obtained open new scenarios for innovative approaches for a cell-based treatment of neurological degenerative disorders.
Stem Cells and Development | 2012
Chiara Gardin; Eriberto Bressan; Letizia Ferroni; Elisa Nalesso; Vincenzo Vindigni; Edoardo Stellini; Paolo Pinton; Stefano Sivolella; Barbara Zavan
In the field of tissue engineering, adult stem cells are increasingly recognized as an important tool for in vitro reconstructed tissue-engineered grafts. In the world of cell therapies, undoubtedly, mesenchymal stem cells from bone marrow or adipose tissue are the most promising progenitors for tissue engineering applications. In this setting, adipose-derived stem cells (ASCs) are generally similar to those derived from bone marrow and are most conveniently extracted from tissue removed by elective cosmetic liposuction procedures; they also show a great potential for endothelization. The aim of the present work was to investigate how the cocommitment into a vascular and bone phenotype of ASCs could be a useful tool for improving the in vitro and in vivo reconstruction of a vascularized bone graft. Human ASCs obtained from abdominoplasty procedures were loaded in a hydroxyapatite clinical-grade scaffold, codifferentiated, and tested for proliferation, cell distribution, and osteogenic and vasculogenic gene expression. The chromosomal stability of the cultures was investigated using the comparative genomic hybridization array for 3D cultures. ASC adhesion, distribution, proliferation, and gene expression not only demonstrated a full osteogenic and vasculogenic commitment in vitro and in vivo, but also showed that endothelization strongly improves their osteogenic commitment. In the end, genetic analyses confirmed that no genomical alteration in long-term in vitro culture of ASCs in 3D scaffolds occurs.