Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Pinton is active.

Publication


Featured researches published by Paolo Pinton.


Cell | 2005

Electron transfer between cytochrome C and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis

Marco Giorgio; Enrica Migliaccio; Francesca Orsini; Demis Paolucci; Maurizio Moroni; Cristina Contursi; Giovanni Pelliccia; Lucilla Luzi; Saverio Minucci; Massimo Marcaccio; Paolo Pinton; Rosario Rizzuto; Paolo Bernardi; Francesco Paolucci; Pier Giuseppe Pelicci

Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.


Nature Cell Biology | 2008

Regulation of autophagy by cytoplasmic p53

Ezgi Tasdemir; M. Chiara Maiuri; Lorenzo Galluzzi; Ilio Vitale; Mojgan Djavaheri-Mergny; Marcello D'Amelio; Alfredo Criollo; Eugenia Morselli; Changlian Zhu; Francis Harper; Ulf Nannmark; Chrysanthi Samara; Paolo Pinton; Jose Miguel Vicencio; Rosa Carnuccio; Ute M. Moll; Frank Madeo; Patrizia Paterlini-Bréchot; Rosario Rizzuto; Gérard Pierron; Klas Blomgren; Nektarios Tavernarakis; Patrice Codogno; Francesco Cecconi; Guido Kroemer

Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53−/− cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.


Oncogene | 2008

Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis

Paolo Pinton; Carlotta Giorgi; Roberta Siviero; Erika Zecchini; Rosario Rizzuto

There is a growing consensus that the various forms of cell death (necrosis, apoptosis and autophagy) are not separated by strict boundaries, but rather share molecular effectors and signaling routes. Among the latter, a clear role is played by calcium (Ca2+), the ubiquitous second messenger involved in the control of a broad variety of physiological events. Fine tuning of intracellular Ca2+ homeostasis by anti- and proapoptotic proteins shapes the Ca2+ signal to which mitochondria and other cellular effectors are exposed, and hence the efficiency of various cell death inducers. Here, we will review: (i) the evidence linking calcium homeostasis to the regulation of apoptotic, and more recently autophagic cell death, (ii) the discussion of mitochondria as a critical, although not unique checkpoint and (iii) the molecular and functional elucidation of ER/mitochondria contacts, corresponding to the mitochondria-associated membrane (MAM) subfraction and proposed to be a specialized signaling microdomain.


The EMBO Journal | 2001

The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide‐induced apoptosis: significance for the molecular mechanism of Bcl‐2 action

Paolo Pinton; Davide Ferrari; Elena Rapizzi; Francesco Di Virgilio; Tullio Pozzan; Rosario Rizzuto

The mechanism of action of the anti‐apoptotic oncogene Bcl‐2 is still largely obscure. We have recently shown that the overexpression of Bcl‐2 in HeLa cells reduces the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) by increasing the passive Ca2+ leak from the organelle. To investigate whether this Ca2+ depletion is part of the mechanism of action of Bcl‐2, we mimicked the Bcl‐2 effect on [Ca2+]er by different pharmacological and molecular approaches. All conditions that lowered [Ca2+]er protected HeLa cells from ceramide, a Bcl‐2‐sensitive apoptotic stimulus, while treatments that increased [Ca2+]er had the opposite effect. Surprisingly, ceramide itself caused the release of Ca2+ from the endoplasmic reticulum and thus [Ca2+] increased both in the cytosol and in the mitochondrial matrix, paralleled by marked alterations in mitochondria morphology. The reduction of [Ca2+]er levels, as well as the buffering of cytoplasmic [Ca2+] changes, prevented mitochondrial damage and protected cells from apoptosis. It is therefore concluded that the Bcl‐2‐dependent reduction of [Ca2+]er is an important component of the anti‐apoptotic program controlled by this oncogene.


The EMBO Journal | 1998

The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum.

Paolo Pinton; Tullio Pozzan; Rosario Rizzuto

In the past few years, intracellular organelles, such as the endoplasmic reticulum, the nucleus and the mitochondria, have emerged as key determinants in the generation and transduction of Ca2+ signals of high spatio‐temporal complexity. Little is known about the Golgi apparatus, despite the fact that Ca2+ within its lumen controls essential processes, such as protein processing and sorting. We report the direct monitoring of the [Ca2+] in the Golgi lumen ([Ca2+]Golgi) of living HeLa cells, using a specifically targeted Ca2+‐sensitive photoprotein. With this probe, we show that, in resting cells, [Ca2+]Golgi is ∼0.3 mM and that Ca2+ accumulation by the Golgi has properties distinct from those of the endoplasmic reticulum (as inferred by the sensitivity to specific inhibitors). Upon stimulation with histamine, an agonist coupled to the generation of inositol 1,4,5‐trisphosphate (IP3), a large, rapid decrease in [Ca2+]Golgi is observed. The Golgi apparatus can thus be regarded as a bona fide IP3‐sensitive intracellular Ca2+ store, a notion with major implications for the control of organelle function, as well as for the generation of local cytosolic Ca2+ signals.


Oncogene | 2003

Calcium and apoptosis: facts and hypotheses

Rosario Rizzuto; Paolo Pinton; Davide Ferrari; Mounia Chami; Paulo J. Magalhães; Francesco Di Virgilio; Tullio Pozzan

Although longstanding experimental evidence has associated alterations of calcium homeostasis to cell death, only in the past few years the role of calcium in the signaling of apoptosis has been extensively investigated. In this review, we will summarize the current knowledge, focusing on (i) the effect of the proteins of the Bcl-2 family on ER Ca2+ levels, (ii) the action of the proteolytic enzymes of apoptosis on the Ca2+ signaling machinery, (iii) the ensuing alterations on the signaling patterns of extracellular stimuli, and (iv) the intracellular targets of ‘apoptotic’ Ca2+ signals, with special emphasis on the mitochondria and cytosolic Ca2+-dependent enzymes.


Nature Protocols | 2009

Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells

Mariusz R. Wieckowski; Carlotta Giorgi; Magdalena Lebiedzinska; Jerzy Duszyński; Paolo Pinton

Many cellular processes require the proper cooperation between mitochondria and the endoplasmic reticulum (ER). Several recent works show that their functional interactions rely on dynamic structural contacts between both organelles. Such contacts, called mitochondria-associated membranes (MAMs), are crucial for the synthesis and intracellular transport of phospholipids, as well as for intracellular Ca2+ signaling and for the determination of mitochondrial structure. Although several techniques are available to isolate mitochondria, only few are specifically tuned to the isolation of MAM, containing unique regions of ER membranes attached to the outer mitochondrial membrane and mitochondria without contamination from other organelles (i.e., pure mitochondria). Here we provide optimized protocols to isolate these fractions from tissues and cells. These procedures require 4–5 h and can be easily modified and adapted to different tissues and cell types.


Journal of Cell Biology | 2002

Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria

Elena Rapizzi; Paolo Pinton; György Szabadkai; Mariusz R. Wieckowski; Grégoire Vandecasteele; Geoff Baird; Richard A. Tuft; Kevin E. Fogarty; Rosario Rizzuto

Although the physiological relevance of mitochondrial Ca2+ homeostasis is widely accepted, no information is yet available on the molecular identity of the proteins involved in this process. Here we analyzed the role of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane in the transmission of Ca2+ signals between the ER and mitochondria by measuring cytosolic and organelle [Ca2+] with targeted aequorins and Ca2+-sensitive GFPs. In HeLa cells and skeletal myotubes, the transient expression of VDAC enhanced the amplitude of the agonist-dependent increases in mitochondrial matrix Ca2+ concentration by allowing the fast diffusion of Ca2+ from ER release sites to the inner mitochondrial membrane. Indeed, high speed imaging of mitochondrial and cytosolic [Ca2+] changes showed that the delay between the rises occurring in the two compartments is significantly shorter in VDAC-overexpressing cells. As to the functional consequences, VDAC-overexpressing cells are more susceptible to ceramide-induced cell death, thus confirming that mitochondrial Ca2+ uptake plays a key role in the process of apoptosis. These results reveal a novel function for the widely expressed VDAC channel, identifying it as a molecular component of the routes for Ca2+ transport across the mitochondrial membranes.


Biochimica et Biophysica Acta | 2009

Ca2+ transfer from the ER to mitochondria: when, how and why

Rosario Rizzuto; Saverio Marchi; Massimo Bonora; Paola Aguiari; Angela Bononi; Diego De Stefani; Carlotta Giorgi; Sara Leo; Alessandro Rimessi; Roberta Siviero; Erika Zecchini; Paolo Pinton

The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca(2+) concentration ([Ca(2+)]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca(2+)] in the mitochondrial matrix ([Ca(2+)]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca(2+) transporters, the close proximity to the endoplasmic reticulum (ER) Ca(2+)-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca(2+) channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca(2+)]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca(2+) homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca(2+) signaling machinery.


Journal of Signal Transduction | 2012

Mitochondria-ros crosstalk in the control of cell death and aging.

Saverio Marchi; Carlotta Giorgi; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Sonia Missiroli; Simone Patergnani; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton

Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.

Collaboration


Dive into the Paolo Pinton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariusz R. Wieckowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge