Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Piubelli is active.

Publication


Featured researches published by Chiara Piubelli.


Neuroscience | 2006

Proteomic analysis of rat hippocampus after repeated psychosocial stress

Lucia Carboni; Chiara Piubelli; C. Pozzato; Hubert Astner; R. Arban; Pier Giorgio Righetti; Mahmoud Hamdan; Enrico Domenici

Since stress plays a role in the onset and physiopathology of psychiatric diseases, animal models of chronic stress may offer insights into pathways operating in mood disorders. The aim of this study was to identify the molecular changes induced in rat hippocampus by repeated exposure to psychosocial stress with a proteomic technique. In the social defeat model, the experimental animal was defeated by a dominant male eight times. Additional groups of rats were submitted to a single defeat or placed in an empty cage (controls). The open field test was carried out on parallel animal groups. The day after the last exposure, levels of hippocampal proteins were compared between groups after separation by 2-D gel electrophoresis and image analysis. Spots showing significantly altered levels were submitted to peptide fingerprinting mass spectrometry for protein identification. The intensity of 69 spots was significantly modified by repeated stress and 21 proteins were unambiguously identified, belonging to different cellular functions, including protein folding, signal transduction, synaptic plasticity, cytoskeleton regulation and energy metabolism. This work identified molecular changes in protein levels caused by exposure to repeated psychosocial stress. The pattern of changes induced by repeated stress was quantitatively and qualitatively different from that observed after a single exposure. Several changed proteins have already been associated with stress-related responses; some of them are here described for the first time in relation to stress.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2010

Early-life stress and antidepressants modulate peripheral biomarkers in a gene-environment rat model of depression.

Lucia Carboni; Serena Becchi; Chiara Piubelli; Alessandra Mallei; Roberto Giambelli; Maria Razzoli; Aleksander A. Mathé; Maurizio Popoli; Enrico Domenici

BACKGROUND Availability of peripheral biomarkers for depression could aid diagnosis and help to predict treatment response. The objective of this work was to analyse the peripheral biomarker response in a gene-environment interaction model of depression. Genetically selected Flinders Sensitive Line (FSL) rats were subjected to maternal separation (MS), since early-life trauma is an important antecedent of depression. An open-ended approach based on a proteomic analysis of serum was combined with the evaluation of depression-associated proteins. METHODS Rats experienced MS and chronically received escitalopram (ESC) or nortryptiline (NOR). Serum proteins were compared by two-dimensional gel electrophoresis. Corticosterone, cytokines, BDNF and C-reactive protein (CRP) were measured by immunoassays. RESULTS Comparing FSL with the control Flinders Resistant Line (FRL), Apo-AI and Apo-AIV, alpha1-macroglobulin, glutathione peroxidase and complement-C3 were significantly modulated. Significant increases were detected in leptin, interleukin (IL) 1alpha and BDNF. CRP levels were significantly reduced. The impact of early-life stress was assessed by comparing FSL+MS versus FSL. Apo-E, alpha1-macroglobulin, complement-C3, transferrin and hemopexin were significantly modulated. The effect of stress in antidepressant response was then evaluated. In the comparison FSL+ESC+MS versus FSL+ESC, albumin, alpha1-macroglobulin, glutathione peroxidase and complement-C3 were modulated and significant reductions were detected in IL4, IL6, IL10, CRP and BDNF. By comparing FSL+NOR+MS versus FSL+NOR proteins like Apo-AIV, pyruvate dehydrogenase, alpha1-macroglobulin, transferrin and complement-C3 showed different levels. CONCLUSIONS Lipid metabolism and immunity proteins were differently expressed in FSL in comparison with FRL. Exposure to MS induced changes in inflammation and transport proteins which became apparent in response to antidepressant treatments. Modulated proteins could suggest biomarker studies in humans.


European Neuropsychopharmacology | 2006

Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists

Lucia Carboni; Miriam Vighini; Chiara Piubelli; Laura Castelletti; Alberto Milli; Enrico Domenici

Chronic administration of antidepressants is required for their efficacy, suggesting the involvement of long-term modifications. As the impact of antidepressant treatment on the brain molecular machinery is not completely understood, we performed a proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine, with an NK1 receptor antagonist, GR205171, and a CRF receptor 1 antagonist, DMP696. After 2D electrophoresis, protein expression levels were compared with both univariate and multivariate statistical analyses and identified by mass spectrometry. All treatments modified levels of actin isoforms, whereas both fluoxetine and GR205171 reduced synapsin II. Fluoxetine treatment increased ERK2 and NP25 and decreased vacuolar ATP synthase. After GR205171 treatment, protein disulphide isomerase A was reduced; dynamin 1 and aldose reductase increased. DMP696 modulated DRP2, pyruvate kinase, LDH and ATP synthase. Although each compound induced a specific pattern of protein modulation, data suggest that antidepressants share the ability of modulating neural plasticity.


PLOS ONE | 2010

Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours

Ekaterini Blaveri; Fiona M. Kelly; Alessandra Mallei; Kriss Harris; Adam Taylor; Juliet Reid; Maria Razzoli; Lucia Carboni; Chiara Piubelli; Laura Musazzi; Girogio Racagni; Aleksander A. Mathé; Maurizio Popoli; Enrico Domenici; Stewart Bates

Background The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression. Principal Findings In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL. Conclusions These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.


Rapid Communications in Mass Spectrometry | 2000

Effect of experimental conditions on the analysis of sodium dodecyl sulphate polyacrylamide gel electrophoresis separated proteins by matrix-assisted laser desorption/ ionisation mass spectrometry.

Marina Galvani; Ellenia Bordini; Chiara Piubelli; Mahmoud Hamdan

Two mixtures of proteins having molecular weights in the range approximately 8-97 kDa were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and examined by delayed extraction matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). Part of our aim in this study is to gain more insight into the influence of the various experimental conditions on the overall quality of the acquired mass spectral data. Different protein extraction procedures, two staining agents, and extraction times, were among the parameters assessed. In terms of the overall quality of the acquired mass spectra and the speed of protein recovery, ultrasonic assisted passive elution, into a solvent mixture containing formic acid/acetonitrile/2-isopropanol/water, was found to be more efficient than other elution procedures. The higher resolution associated with the delayed extraction mode allowed the identification of a number of protein modifications, including multiple formylation provoked by formic acid, cysteine alkylation caused by unpolymerised acrylamide monomers, and complexation with the staining reagents. The detection of these modifications, however, was limited to proteins under 30 kDa. Analysis of a ubiquitin tryptic digest by reflectron MALDI time-of-flight (TOF) allowed reliable identification of a number of the formylation sites.


Clinical Chemistry and Laboratory Medicine | 2003

The proteome: anno Domini 2002.

Pier Giorgio Righetti; Annalisa Castagna; Francesca Antonucci; Chiara Piubelli; Daniela Cecconi; Natascia Campostrini; Gianluigi Zanusso; Salvatore Monaco

Abstract We present some current definitions related to functional and structural proteomics and the human proteome, and we review the following aspects of proteome analysis: Classical 2-D map analysis (isoelectric focusing (IEF) followed by SDS-PAGE); Quantitative proteomics (isotope-coded affinity tag (ICAT), fluorescent stains) and their use in e.g., tumor analysis and identification of new target proteins for drug development; Electrophoretic pre-fractionation (how to see the hidden proteome!); Multidimensional separations, such as: (a) coupled size-exclusion and reverse-phase (RP)-HPLC; (b) coupled ion-exchange and RP-HPLC; (c) coupled RPHPLC and RP-HPLC at 25/60 °C; (d) coupled RP-HPLC and capillary electrophoresis (CE); (e) metal affinity chromatography coupled with CE; Protein chips. Some general conclusions are drawn on proteome analysis and we end this review by trying to decode the glass ball of the aruspex and answer the question: “Quo vadis, proteome”?


Neuroscience | 2011

REGULATION OF CYTOSKELETON MACHINERY, NEUROGENESIS AND ENERGY METABOLISM PATHWAYS IN A RAT GENE-ENVIRONMENT MODEL OF DEPRESSION REVEALED BY PROTEOMIC ANALYSIS

Chiara Piubelli; Lucia Carboni; S. Becchi; Aleksander A. Mathé; Enrico Domenici

The development of major depression requires both genetic and environmental factors. A brain proteomic investigation on the genetic model of Flinders sensitive and resistant line (FSL-FRL) rats was performed. Maternal separation (MS) was also applied to identify protein networks affected by stress exposure, since early-life trauma is considered an important antecedent of depression. Hippocampus (HIP) and prefrontal/frontal cortex proteins were extracted and separated by 2-Dimensional (2-D) gel electrophoresis. After image analysis, significantly modulated proteins in the different conditions analysed were identified by mass spectrometry. The expression of proteins involved in energy metabolism, cellular localization and transport, cytoskeleton organization and apoptosis differed in the two lines. Maternal separation differently affected the genetic backgrounds, by modulating cytoskeleton and neuron morphogenesis proteins in FSL; energy metabolism, cellular localization, neuron differentiation and intracellular transport in FRL. The present work shows that different mechanisms could be involved in the pathophysiology of depression and the vulnerability to stress, suggesting possible new cellular pathways and key markers for the study of affective disorders.


The International Journal of Neuropsychopharmacology | 2011

Escitalopram affects cytoskeleton and synaptic plasticity pathways in a rat gene-environment interaction model of depression as revealed by proteomics. Part II: environmental challenge

Chiara Piubelli; Miriam Vighini; Aleksander A. Mathé; Enrico Domenici; Lucia Carboni

Large-scale investigations aimed at elucidating the molecular mechanism of action of antidepressant treatment are achievable through the application of proteomic technologies. We performed a proteomic study on the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL animals were separated from their mothers for 3 h from postnatal days 2 to 14 (maternal separation; MS), since early-life trauma is considered an important antecedent of depression. All groups received either escitalopram (Esc) admixed to food pellets (25 mg/kg.d) or vehicle for 1 month. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins differentially modulated were identified by mass spectrometry. Bioinformatics analyses were performed to discover gene ontology terms associated with the modulated proteins. This paper was focused on the modifications induced by the environmental challenge of MS, both on the predisposed genetic background and on the resistant phenotype. The combination between Esc treatment and MS was investigated by comparing the MS, Esc-treated rats with rats subjected to each single procedure. In MS rats, antidepressant treatment influenced mainly proteins involved in carbohydrate metabolism in FSL rats and in vesicle-mediated transport in FRL rats. When studying the interaction between Esc and MS vs. non-separated rats, proteins playing a role in cytoskeleton organization, neuronal development, vesicle-mediated transport and synaptic plasticity were identified. The results provide further support to the available reports that antidepressant treatment affects intracellular pathways and also suggest new potential targets for future therapeutic intervention.


The International Journal of Neuropsychopharmacology | 2011

Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background

Chiara Piubelli; Miriam Vighini; Aleksander A. Mathé; Enrico Domenici; Lucia Carboni

The wide-scale analysis of protein expression provides a powerful strategy for the molecular exploration of complex pathophysiological mechanisms, such as the response to antidepressants. Using a 2D proteomic approach we investigated the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL pups were separated from their mothers for 3 h (maternal separation, MS), as early-life trauma is considered an important antecedent of depression. All groups were treated with either escitalopram (Esc) admixed to food (25 mg/kg.d) or vehicle for 1 month. At the week 3, forced swim tests were performed. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins displaying statistically significant differences in expression levels were identified by mass spectrometry. Immobility time values in the forced swim test were higher in FSL rats and reduced by antidepressant treatment. Moreover, the Esc-induced reduction in immobility time was not detected in MS rats. The impact of genetic background in response to Esc was specifically investigated here. Bioinformatics analyses highlighted gene ontology terms showing tighter associations with the modulated proteins. Esc modulated protein belonging to cytoskeleton organization in FSL; carbohydrate metabolism and intracellular transport in FRL. Proteins differently modulated in the two strains after MS and Esc play a role in cytoskeleton organization, vesicle-mediated transport, apoptosis regulation and macromolecule catabolism. These findings suggest pathways involved in neuronal remodelling as molecular correlates of response to antidepressants in a model of vulnerability.


European Neuropsychopharmacology | 2011

Nortriptyline influences protein pathways involved in carbohydrate metabolism and actin-related processes in a rat gene–environment model of depression

Chiara Piubelli; Susanne H.M. Gruber; Aram El Khoury; Aleksander A. Mathé; Enrico Domenici; Lucia Carboni

Although most available antidepressants increase monoaminergic neurotransmission, their therapeutic efficacy is likely mediated by longer-term molecular adaptations. To investigate the molecular changes induced by chronic antidepressant treatment we analysed proteomic changes in rat pre-frontal/frontal cortex and hippocampus after nortriptyline (NT) administration. A wide-scale analysis of protein expression was performed on the Flinders Sensitive Line (FSL), a genetically-selected rat model of depression, and the control Flinders Resistant Line (FRL). The effect of NT treatment was examined in a gene-environment interaction model, applying maternal separation (MS) to both strains. In the forced swim test, FSL rats were significantly more immobile than FRL animals, whereas NT treatment reduced immobility time. MS alone did not modify immobility time, but it impaired the response to NT in the FSL strain. In the proteomic analysis, in FSL rats NT treatment chiefly modulated cytoskeleton proteins and carbohydrate metabolism. In the FRL strain, changes influenced protein polymerization and intracellular transport. After MS, NT treatment mainly affected proteins in nucleotide metabolism in FSL rats and synaptic transmission and neurite morphogenesis pathways in FRL rats. When the effects of NT treatment and MS were compared between strains, carbohydrate metabolic pathways were predominantly modulated.

Collaboration


Dive into the Chiara Piubelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne H.M. Gruber

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge