Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Tesi is active.

Publication


Featured researches published by Chiara Tesi.


Circulation | 2013

Late Sodium Current Inhibition Reverses Electromechanical Dysfunction in Human Hypertrophic Cardiomyopathy

Raffaele Coppini; Cecilia Ferrantini; Lina Yao; Peidong Fan; Martina Del Lungo; Francesca Stillitano; Laura Sartiani; Benedetta Tosi; Silvia Suffredini; Chiara Tesi; Magdi H. Yacoub; Iacopo Olivotto; Luiz Belardinelli; Corrado Poggesi; Elisabetta Cerbai; Alessandro Mugelli

Background— Hypertrophic cardiomyopathy (HCM), the most common mendelian heart disorder, remains an orphan of disease-specific pharmacological treatment because of the limited understanding of cellular mechanisms underlying arrhythmogenicity and diastolic dysfunction. Methods and Results— We assessed the electromechanical profile of cardiomyocytes from 26 HCM patients undergoing myectomy compared with those from nonfailing nonhypertrophic surgical patients by performing patch-clamp and intracellular Ca2+ (Ca2+i) studies. Compared with controls, HCM cardiomyocytes showed prolonged action potential related to increased late Na+ (INaL) and Ca2+ (ICaL) currents and decreased repolarizing K+ currents, increased occurrence of cellular arrhythmias, prolonged Ca2+i transients, and higher diastolic Ca2+i. Such changes were related to enhanced Ca2+/calmodulin kinase II (CaMKII) activity and increased phosphorylation of its targets. Ranolazine at therapeutic concentrations partially reversed the HCM-related cellular abnormalities via INaL inhibition, with negligible effects in controls. By shortening the action potential duration in HCM cardiomyocytes, ranolazine reduced the occurrence of early and delayed afterdepolarizations. Finally, as a result of the faster kinetics of Ca2+i transients and the lower diastolic Ca2+i, ranolazine accelerated the contraction-relaxation cycle of HCM trabeculae, ameliorating diastolic function. Conclusions— We highlighted a specific set of functional changes in human HCM myocardium that stem from a complex remodeling process involving alterations of CaMKII-dependent signaling, rather than being a direct consequence of the causal sarcomeric mutations. Among the several ion channel and Ca2+i handling proteins changes identified, an enhanced INaL seems to be a major contributor to the electrophysiological and Ca2+i dynamic abnormalities of ventricular myocytes and trabeculae from patients with HCM, suggesting potential therapeutic implications of INaL inhibition.


Biophysical Journal | 2000

The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle.

Chiara Tesi; F. Colomo; S. Nencini; Corrado Poggesi

In striated muscle, force generation and phosphate (P(i)) release are closely related. Alterations in the [P(i)] bathing skinned fibers have been used to probe key transitions of the mechanochemical coupling. Accuracy in this kind of studies is reduced, however, by diffusional barriers. A new perfusion technique is used to study the effect of [P(i)] in single or very thin bundles (1-3 microM in diameter; 5 degrees C) of rabbit psoas myofibrils. With this technique, it is possible to rapidly jump [P(i)] during contraction and observe the transient and steady-state effects on force of both an increase and a decrease in [P(i)]. Steady-state isometric force decreases linearly with an increase in log[P(i)] in the range 500 microM to 10 mM (slope -0.4/decade). Between 5 and 200 microM P(i), the slope of the relation is smaller ( approximately -0.07/decade). The rate constant of force development (k(TR)) increases with an increase in [P(i)] over the same concentration range. After rapid jumps in [P(i)], the kinetics of both the force decrease with an increase in [P(i)] (k(Pi(+))) and the force increase with a decrease in [P(i)] (k(Pi(-))) were measured. As observed in skinned fibers with caged P(i), k(Pi(+)) is about three to four times higher than k(TR), strongly dependent on final [P(i)], and scarcely modulated by the activation level. Unexpectedly, the kinetics of force increase after jumps from high to low [P(i)] is slower: k(Pi(-)) is indistinguishable from k(TR) measured at the same [P(i)] and has the same calcium sensitivity.


Pflügers Archiv: European Journal of Physiology | 2005

Sarcomeric determinants of striated muscle relaxation kinetics

Corrado Poggesi; Chiara Tesi; Robert Stehle

Ca2+ is the primary regulator of force generation by cross-bridges in striated muscle activation and relaxation. Relaxation is as necessary as contraction and, while the kinetics of Ca2+-induced force development have been investigated extensively, those of force relaxation have been both studied and understood less well. Knowledge of the molecular mechanisms underlying relaxation kinetics is of special importance for understanding diastolic function and dysfunction of the heart. A number of experimental models, from whole muscle organs and intact muscle fibres down to single myofibrils, have been used to explore the cascade of kinetic events leading to mechanical relaxation. By using isolated myofibrils and fast solution switching techniques we can distinguish the sarcomeric mechanisms of relaxation from those of myoplasmic Ca2+ removal. There is strong evidence that cross-bridge mechanics and kinetics are major determinants of the time course of striated muscle relaxation whilst thin filament inactivation kinetics and cooperative activation of thin filament by cycling, force-generating cross-bridges do not significantly limit the relaxation rate. Results in myofibrils can be explained well by a simple two-state model of the cross-bridge cycle in which the apparent rate of the force generating transition is modulated by fast, Ca2+-dependent equilibration between off- and on-states of actin. Inter-sarcomere dynamics during the final rapid phase of full force relaxation are responsible for deviations from this simple model.


The Journal of Physiology | 2002

Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles

Chiara Tesi; F. Colomo; Corrado Poggesi

The inhibitory effects of inorganic phosphate (Pi) on isometric force in striated muscle suggest that in the ATPase reaction Pi release is coupled to force generation. Whether Pi release and the power stroke are synchronous events or force is generated by an isomerization of the quaternary complex of actomyosin and ATPase products (AM.ADP.Pi) prior to the following release of Pi is still controversial. Examination of the dependence of isometric force on [Pi] in rabbit fast (psoas; 5‐15 °C) and slow (soleus; 15‐20 °C) myofibrils was used to test the two‐step hypothesis of force generation and Pi release. Hyperbolic fits of force‐[Pi] relations obtained in fast and slow myofibrils at 15 °C produced an apparent asymptote as [Pi]∞ of 0.07 and 0.44 maximal isometric force (i.e. force in the absence of Pi) in psoas and soleus myofibrils, respectively, with an apparent Kd of 4.3 mm in both. In each muscle type, the force‐[Pi] relation was independent of temperature. However, 2,3‐butanedione 2‐monoxime (BDM) decreased the apparent asymptote of force in both muscle types, as expected from its inhibition of the force‐generating isomerization. These data lend strong support to models of cross‐bridge action in which force is produced by an isomerization of the AM.ADP.Pi complex immediately preceding the Pi release step.


The Journal of Physiology | 2008

The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils

Alexandra Belus; Beatrice Scellini; Chiara Tesi; Giulia d’Amati; Francesca Girolami; Magdi Yacoub; Franco Cecchi; Iacopo Olivotto; Corrado Poggesi

The R403Q mutation in β‐myosin heavy chain was the first mutation to be identified as responsible for familial hypertrophic cardiomyopathy (FHC). In spite of extensive work on the functional sequelae of this mutation, the mechanism by which the mutant protein causes the disease has not been definitely identified. Here we directly compare contraction and relaxation mechanics of single myofibrils from left ventricular samples of one patient carrying the R403Q mutation to those from a healthy control heart. Tension generation and relaxation following sudden increase and decrease in [Ca2+] were much faster in the R403Q myofibrils with relaxation rates being the most affected parameters. The results show that the R403Q mutation leads to an apparent gain of protein function but a greater energetic cost of tension generation. Increased energy cost of tension generation may be central to the FHC disease process, help explain some unresolved clinical observations, and carry significant therapeutic implications.


The Journal of Physiology | 1997

Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog.

F. Colomo; Corrado Poggesi; G te Kronnie; Chiara Tesi

1. Force measurements in isolated myofibrils (15 degrees C; sarcomere length, 2.10 microns) were used in this study to determine whether sarcomeric proteins are responsible for the large differences in the amounts of active and passive tension of cardiac versus skeletal muscle. Single myofibrils and bundles of two to four myofibrils were prepared from glycerinated tibialis anterior and sartorius muscles of the frog. Skinned frog atrial myocytes were used as a model for cardiac myofibrils. 2. Electron microscope analysis of the preparations showed that: (i) frog atrial myocytes contained a small and variable number of individual myofibrils (from 1 to 7); (ii) the mean cross‐sectional area and mean number of myosin filaments of individual cardiac myofibrils did not differ significantly from those of single skeletal myofibrils; and (iii) the total myofibril cross‐sectional area of atrial myocytes was on average comparable to that of bundles of two to four skeletal myofibrils. 3. In maximally activated skeletal preparations, values of active force ranged from 0.45 +/‐ 0.03 microN for the single myofibrils (mean +/‐ S.E.M.; n = 16) to 1.44 +/‐ 0.24 microN for the bundles of two to four myofibrils (n = 9). Maximum active force values of forty‐five cardiac myocytes averaged 1.47 +/‐ 0.10 microN and exhibited a non‐continuous distribution with peaks at intervals of about 0.5 microN. The results suggest that variation in active force among cardiac preparations mainly reflects variability in the number of myofibrils inside the myocytes and that individual cardiac myofibrils develop the same average amount of force as single skeletal myofibrils. 4. The mean sarcomere length‐resting force relation of atrial myocytes could be superimposed on that of bundles of two to four skeletal myofibrils. This suggests that, for any given amount of strain, individual cardiac and skeletal sarcomeres bear essentially the same passive force. 5. The length‐passive tension data of all preparations could be fitted by an exponential equation. Equation parameters obtained for both types of myofibrils were in reasonable agreement with those reported for larger preparations of frog skeletal muscle but were very different from those estimated for multicellular frog atrial preparations. It is concluded that myofibrils are the major determinant of resting tension in skeletal muscle; structures other than the myofibrils are responsible for the high passive stiffness of frog cardiac muscle.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Action potential propagation in transverse-axial tubular system is impaired in heart failure

Leonardo Sacconi; Cecilia Ferrantini; Jacopo Lotti; Raffaele Coppini; Ping Yan; Leslie M. Loew; Chiara Tesi; Elisabetta Cerbai; Corrado Poggesi; Francesco S. Pavone

The plasma membrane of cardiac myocytes presents complex invaginations known as the transverse-axial tubular system (TATS). Despite TATSs crucial role in excitation-contraction coupling and morphological alterations found in pathological settings, TATSs electrical activity has never been directly investigated in remodeled tubular networks. Here we develop an ultrafast random access multiphoton microscope that, in combination with a customly synthesized voltage-sensitive dye, is used to simultaneously measure action potentials (APs) at multiple sites within the sarcolemma with submillisecond temporal and submicrometer spatial resolution in real time. We find that the tight electrical coupling between different sarcolemmal domains is guaranteed only within an intact tubular system. In fact, acute detachment by osmotic shock of most tubules from the surface sarcolemma prevents AP propagation not only in the disconnected tubules, but also in some of the tubules that remain connected with the surface. This indicates that a structural disorganization of the tubular system worsens the electrical coupling between the TATS and the surface. The pathological implications of this finding are investigated in failing hearts. We find that AP propagation into the pathologically remodeled TATS frequently fails and may be followed by local spontaneous electrical activity. Our findings provide insight on the relationship between abnormal TATS and asynchronous calcium release, a major determinant of cardiac contractile dysfunction and arrhythmias.


Circulation Research | 2006

Impaired Diastolic Function After Exchange of Endogenous Troponin I with C-Terminal Truncated Troponin I in Human Cardiac Muscle

Nadiya A. Narolska; Alexandra Belus; N.M. Boontje; Beatrice Scellini; Sascha Deppermann; Ruud Zaremba; René J. P. Musters; Cris dos Remedios; Kornelia Jaquet; D. Brian Foster; Anne M. Murphy; Jennifer E. Van Eyk; Chiara Tesi; Corrado Poggesi; Jolanda van der Velden; Ger J.M. Stienen

The specific and selective proteolysis of cardiac troponin I (cTnI) has been proposed to play a key role in human ischemic myocardial disease, including stunning and acute pressure overload. In this study, the functional implications of cTnI proteolysis were investigated in human cardiac tissue for the first time. The predominant human cTnI degradation product (cTnI1–192) and full-length cTnI were expressed in Escherichia coli, purified, reconstituted with the other cardiac troponin subunits, troponin T and C, and subsequently exchanged into human cardiac myofibrils and permeabilized cardiomyocytes isolated from healthy donor hearts. Maximal isometric force and kinetic parameters were measured in myofibrils, using rapid solution switching, whereas force development was measured in single cardiomyocytes at various calcium concentrations, at sarcomere lengths of 1.9 and 2.2 &mgr;m, and after treatment with the catalytic subunit of protein kinase A (PKA) to mimic &bgr;-adrenergic stimulation. One-dimensional gel electrophoresis, Western immunoblotting, and 3D imaging revealed that approximately 50% of endogenous cTnI had been homogeneously replaced by cTnI1–192 in both myofibrils and cardiomyocytes. Maximal tension was not affected, whereas the rates of force activation and redevelopment as well as relaxation kinetics were slowed down. Ca2+ sensitivity of the contractile apparatus was increased in preparations containing cTnI1–192 (pCa50: 5.73±0.03 versus 5.52±0.03 for cTnI1–192 and full-length cTnI, respectively). The sarcomere length dependency of force development and the desensitizing effect of PKA were preserved in cTnI1–192-exchanged cardiomyocytes. These results indicate that degradation of cTnI in human myocardium may impair diastolic function, whereas systolic function is largely preserved.


Cardiovascular Research | 2013

Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy

E. Rosalie Witjas-Paalberends; Kelly Stam; Sabine J. van Dijk; Vasco Sequeira Oliviera; Claudia Ferrara; Beatrice Scellini; Mark Hazebroek; Folkert J. ten Cate; Marjon van Slegtenhorst; Cris dos Remedios; Hans W.M. Niessen; Chiara Tesi; Ger J.M. Stienen; Stephane Heymans; Michelle Michels; Corrado Poggesi; Jolanda van der Velden

AIMS Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. METHODS AND RESULTS Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 μm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²⁺]. CONCLUSION Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²⁺]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.


Journal of Molecular and Cellular Cardiology | 2011

Calcium binding kinetics of troponin C strongly modulate cooperative activation and tension kinetics in cardiac muscle

Kareen L. Kreutziger; Jonathan T. McMichael; Chiara Tesi; Corrado Poggesi; Michael Regnier

Tension development and relaxation in cardiac muscle are regulated at the thin filament via Ca(2+) binding to cardiac troponin C (cTnC) and strong cross-bridge binding. However, the influence of cTnC Ca(2+)-binding properties on these processes in the organized structure of cardiac sarcomeres is not well-understood and likely differs from skeletal muscle. To study this we generated single amino acid variants of cTnC with altered Ca(2+) dissociation rates (k(off)), as measured in whole troponin (cTn) complex by stopped-flow spectroscopy (I61Q cTn>WT cTn>L48Q cTn), and exchanged them into cardiac myofibrils and demembranated trabeculae. In myofibrils at saturating Ca(2+), L48Q cTnC did not affect maximum tension (T(max)), thin filament activation (k(ACT)) and tension development (k(TR)) rates, or the rates of relaxation, but increased duration of slow phase relaxation. In contrast, I61Q cTnC reduced T(max), k(ACT) and k(TR) by 40-65% with little change in relaxation. Interestingly, k(ACT) was less than k(TR) with I61Q cTnC, and this difference increased with addition of inorganic phosphate, suggesting that reduced cTnC Ca(2+)-affinity can limit thin filament activation kinetics. Trabeculae exchanged with I61Q cTn had reduced T(max), Ca(2+) sensitivity of tension (pCa(50)), and slope (n(H)) of tension-pCa, while L48Q cTn increased pCa(50) and reduced n(H). Increased cross-bridge cycling with 2-deoxy-ATP increased pCa(50) with WT or L48Q cTn, but not I61Q cTn. We discuss the implications of these results for understanding the role of cTn Ca(2+)-binding properties on the magnitude and rate of tension development and relaxation in cardiac muscle.

Collaboration


Dive into the Chiara Tesi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Sacconi

European Laboratory for Non-Linear Spectroscopy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Crocini

European Laboratory for Non-Linear Spectroscopy

View shared research outputs
Top Co-Authors

Avatar

F. Colomo

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge