Chiara Toffanin
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiara Toffanin.
Diabetes | 2012
Marc D. Breton; Anne Farret; Daniela Bruttomesso; Stacey M. Anderson; Lalo Magni; Stephen D. Patek; Chiara Dalla Man; Jerome Place; Susan Demartini; Simone Del Favero; Chiara Toffanin; Colleen Hughes-Karvetski; Eyal Dassau; Howard Zisser; Francis J. Doyle; Giuseppe De Nicolao; Angelo Avogaro; Claudio Cobelli; Eric Renard; Boris P. Kovatchev
Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9–10 mmol/L. The CLC system was fully integrated using automated data transfer CGM→algorithm→CSII. All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 mmol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs.
Diabetes Care | 2014
Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Lloyd B. Mize; Anne Farret; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Federico Boscari; Silvia Galasso; Angelo Avogaro; Lalo Magni; Federico Di Palma; Chiara Toffanin; Mirko Messori; Eyal Dassau; Francis J. Doyle
OBJECTIVE We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)—a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS The primary outcome—reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)—resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9–10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety.
The Lancet Diabetes & Endocrinology | 2015
Jort Kropff; Simone Del Favero; Jerome Place; Chiara Toffanin; Roberto Visentin; Marco Monaro; Mirko Messori; Federico Di Palma; Giordano Lanzola; Anne Farret; Federico Boscari; Silvia Galasso; Paolo Magni; Angelo Avogaro; Patrick Keith-Hynes; Boris P. Kovatchev; Daniela Bruttomesso; Claudio Cobelli; J. Hans DeVries; Eric Renard; Lalo Magni
BACKGROUND An artificial pancreas (AP) that can be worn at home from dinner to waking up in the morning might be safe and efficient for first routine use in patients with type 1 diabetes. We assessed the effect on glucose control with use of an AP during the evening and night plus patient-managed sensor-augmented pump therapy (SAP) during the day, versus 24 h use of patient-managed SAP only, in free-living conditions. METHODS In a crossover study done in medical centres in France, Italy, and the Netherlands, patients aged 18-69 years with type 1 diabetes who used insulin pumps for continuous subcutaneous insulin infusion were randomly assigned to 2 months of AP use from dinner to waking up plus SAP use during the day versus 2 months of SAP use only under free-living conditions. Randomisation was achieved with a computer-generated allocation sequence with random block sizes of two, four, or six, masked to the investigator. Patients and investigators were not masked to the type of intervention. The AP consisted of a continuous glucose monitor (CGM) and insulin pump connected to a modified smartphone with a model predictive control algorithm. The primary endpoint was the percentage of time spent in the target glucose concentration range (3·9-10·0 mmol/L) from 2000 to 0800 h. CGM data for weeks 3-8 of the interventions were analysed on a modified intention-to-treat basis including patients who completed at least 6 weeks of each intervention period. The 2 month study period also allowed us to asses HbA1c as one of the secondary outcomes. This trial is registered with ClinicalTrials.gov, number NCT02153190. FINDINGS During 2000-0800 h, the mean time spent in the target range was higher with AP than with SAP use: 66·7% versus 58·1% (paired difference 8·6% [95% CI 5·8 to 11·4], p<0·0001), through a reduction in both mean time spent in hyperglycaemia (glucose concentration >10·0 mmol/L; 31·6% vs 38·5%; -6·9% [-9·8% to -3·9], p<0·0001) and in hypoglycaemia (glucose concentration <3·9 mmol/L; 1·7% vs 3·0%; -1·6% [-2·3 to -1·0], p<0·0001). Decrease in mean HbA1c during the AP period was significantly greater than during the control period (-0·3% vs -0·2%; paired difference -0·2 [95% CI -0·4 to -0·0], p=0·047), taking a period effect into account (p=0·0034). No serious adverse events occurred during this study, and none of the mild-to-moderate adverse events was related to the study intervention. INTERPRETATION Our results support the use of AP at home as a safe and beneficial option for patients with type 1 diabetes. The HbA1c results are encouraging but preliminary. FUNDING European Commission.
IEEE Transactions on Biomedical Engineering | 2012
Stephen D. Patek; Lalo Magni; Eyal Dassau; Colleen Hughes-Karvetski; Chiara Toffanin; G. De Nicolao; S. Del Favero; Marc D. Breton; Chiara Dalla Man; Eric Renard; Howard Zisser; Francis J. Doyle; Claudio Cobelli; Boris P. Kovatchev
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called “artificial pancreas,” modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patients basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability.
Journal of diabetes science and technology | 2009
Lalo Magni; Marco Forgione; Chiara Toffanin; Chiara Dalla Man; Boris P. Kovatchev; Giuseppe De Nicolao; Claudio Cobelli
Background: The technological advancements in subcutaneous continuous glucose monitoring and insulin pump delivery systems have paved the way to clinical testing of artificial pancreas devices. The experience derived by clinical trials poses technological challenges to the automatic control expert, the most notable being the large interpatient and intrapatient variability and the inherent uncertainty of patient information. Methods: A new model predictive control (MPC) glucose control system is proposed. The starting point is an MPC algorithm applied in 20 type 1 diabetes mellitus (T1DM) subjects. Three main changes are introduced: individualization of the ARX model used for prediction; synthesis of the MPC law on top of the open-loop basal/bolus therapy; and a run-to-run approach for implementing day-by-day tuning of the algorithm. In order to individualize the ARX model, a sufficiently exciting insulin profile is imposed by splitting the premeal bolus into two smaller boluses (40% and 60%) injected 30 min before and 30 min after the meal. Results: The proposed algorithm was tested on 100 virtual subjects extracted from an in silico T1DM population. The trial simulates 44 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. For 10 days, meals are multiplied by a random variable uniformly distributed in [0.5, 1.5], while insulin delivery is based on nominal meals. Moreover, for 10 days, either a linear increase or decrease of insulin sensitivity (±25% of nominal value) is introduced. Conclusions: The ARX model identification procedure offers an automatic tool for patient model individualization. The run-to-run approach is an effective way to auto-tune the aggressiveness of the closed-loop control law, is robust to meal variation, and is also capable of adapting the regulator to slow parameter variations, e.g., on insulin sensitivity.
Diabetes Care | 2013
Yoeri M. Luijf; J. Hans DeVries; Koos H. Zwinderman; Lalantha Leelarathna; Marianna Nodale; Karen Caldwell; Kavita Kumareswaran; Daniela Elleri; Janet M. Allen; Malgorzata E. Wilinska; Mark L. Evans; Roman Hovorka; Werner Doll; Martin Ellmerer; Julia K. Mader; Eric Renard; Jerome Place; Anne Farret; Claudio Cobelli; Simone Del Favero; Chiara Dalla Man; Angelo Avogaro; Daniela Bruttomesso; Alessio Filippi; Rachele Scotton; Lalo Magni; Giordano Lanzola; Federico Di Palma; Paola Soru; Chiara Toffanin
OBJECTIVE To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS Both CAM and iAP algorithms provide safe glycemic control.
Diabetes Care | 2013
Yoeri M. Luijf; J. Hans DeVries; Koos H. Zwinderman; Lalantha Leelarathna; Marianna Nodale; Karen Caldwell; Kavita Kumareswaran; Daniela Elleri; Janet M. Allen; Malgorzata E. Wilinska; Mark L. Evans; Roman Hovorka; Werner Doll; Martin Ellmerer; Julia K. Mader; Eric Renard; Jerome Place; Anne Farret; Claudio Cobelli; Simone Del Favero; Chiara Dalla Man; Angelo Avogaro; Daniela Bruttomesso; Alessio Filippi; Rachele Scotton; Lalo Magni; Giordano Lanzola; Federico Di Palma; Paola Soru; Chiara Toffanin
OBJECTIVE To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS Both CAM and iAP algorithms provide safe glycemic control.
Diabetes Care | 2014
Simone Del Favero; Daniela Bruttomesso; Federico Di Palma; Giordano Lanzola; Roberto Visentin; Alessio Filippi; Rachele Scotton; Chiara Toffanin; Mirko Messori; Stefania Scarpellini; Patrick Keith-Hynes; Boris P. Kovatchev; J. Hans DeVries; Eric Renard; Lalo Magni; Angelo Avogaro; Claudio Cobelli
OBJECTIVE Inpatient studies suggest that model predictive control (MPC) is one of the most promising algorithms for artificial pancreas (AP). So far, outpatient trials have used hypo/hyperglycemia-mitigation or medical-expert systems. In this study, we report the first wearable AP outpatient study based on MPC and investigate specifically its ability to control postprandial glucose, one of the major challenges in glucose control. RESEARCH DESIGN AND METHODS A new modular MPC algorithm has been designed focusing on meal control. Six type 1 diabetes mellitus patients underwent 42-h experiments: sensor-augmented pump therapy in the first 14 h (open-loop) and closed-loop in the remaining 28 h. RESULTS MPC showed satisfactory dinner control versus open-loop: time-in-target (70–180 mg/dL) 94.83 vs. 68.2% and time-in-hypo 1.25 vs. 11.9%. Overnight control was also satisfactory: time-in-target 89.4 vs. 85.0% and time-in-hypo: 0.00 vs. 8.19%. CONCLUSIONS This outpatient study confirms inpatient evidence of suitability of MPC-based strategies for AP. These encouraging results pave the way to randomized crossover outpatient studies.
Diabetes, Obesity and Metabolism | 2015
S. Del Favero; Jerome Place; Jort Kropff; Mirko Messori; Patrick Keith-Hynes; Roberto Visentin; Marco Monaro; Silvia Galasso; Federico Boscari; Chiara Toffanin; F. Di Palma; Giordano Lanzola; Stefania Scarpellini; Anne Farret; Boris P. Kovatchev; Angelo Avogaro; Daniela Bruttomesso; Lalo Magni; J. H. DeVries; Claudio Cobelli; Eric Renard
To test in an outpatient setting the safety and efficacy of continuous subcutaneous insulin infusion (CSII) driven by a modular model predictive control (MMPC) algorithm informed by continuous glucose monitoring (CGM) measurement.
Diabetes Care | 2016
Eric Renard; Anne Farret; Jort Kropff; Daniela Bruttomesso; Mirko Messori; Jerome Place; Roberto Visentin; Roberta Calore; Chiara Toffanin; Federico Di Palma; Giordano Lanzola; Paolo Magni; Federico Boscari; Silvia Galasso; Angelo Avogaro; Patrick Keith-Hynes; Boris P. Kovatchev; Simone Del Favero; Claudio Cobelli; Lalo Magni; J. Hans DeVries
OBJECTIVE After testing of a wearable artificial pancreas (AP) during evening and night (E/N-AP) under free-living conditions in patients with type 1 diabetes (T1D), we investigated AP during day and night (D/N-AP) for 1 month. RESEARCH DESIGN AND METHODS Twenty adult patients with T1D who completed a previous randomized crossover study comparing 2-month E/N-AP versus 2-month sensor augmented pump (SAP) volunteered for 1-month D/N-AP nonrandomized extension. AP was executed by a model predictive control algorithm run by a modified smartphone wirelessly connected to a continuous glucose monitor (CGM) and insulin pump. CGM data were analyzed by intention-to-treat with percentage time-in-target (3.9–10 mmol/L) over 24 h as the primary end point. RESULTS Time-in-target (mean ± SD, %) was similar over 24 h with D/N-AP versus E/N-AP: 64.7 ± 7.6 vs. 63.6 ± 9.9 (P = 0.79), and both were higher than with SAP: 59.7 ± 9.6 (P = 0.01 and P = 0.06, respectively). Time below 3.9 mmol/L was similarly and significantly reduced by D/N-AP and E/N-AP versus SAP (both P < 0.001). SD of blood glucose concentration (mmol/L) was lower with D/N-AP versus E/N-AP during whole daytime: 3.2 ± 0.6 vs. 3.4 ± 0.7 (P = 0.003), morning: 2.7 ± 0.5 vs. 3.1 ± 0.5 (P = 0.02), and afternoon: 3.3 ± 0.6 vs. 3.5 ± 0.8 (P = 0.07), and was lower with D/N-AP versus SAP over 24 h: 3.1 ± 0.5 vs. 3.3 ± 0.6 (P = 0.049). Insulin delivery (IU) over 24 h was higher with D/N-AP and SAP than with E/N-AP: 40.6 ± 15.5 and 42.3 ± 15.5 vs. 36.6 ± 11.6 (P = 0.03 and P = 0.0004, respectively). CONCLUSIONS D/N-AP and E/N-AP both achieved better glucose control than SAP under free-living conditions. Although time in the different glycemic ranges was similar between D/N-AP and E/N-AP, D/N-AP further reduces glucose variability.