Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lalo Magni is active.

Publication


Featured researches published by Lalo Magni.


IEEE Reviews in Biomedical Engineering | 2009

Diabetes: Models, Signals, and Control

Claudio Cobelli; C. Dalla Man; Giovanni Sparacino; Lalo Magni; G. De Nicolao; Boris P. Kovatchev

The control of diabetes is an interdisciplinary endeavor, which includes a significant biomedical engineering component, with traditions of success beginning in the early 1960s. It began with modeling of the insulin-glucose system, and progressed to large-scale in silico experiments, and automated closed-loop control (artificial pancreas). Here, we follow these engineering efforts through the last, almost 50 years. We begin with the now classic minimal modeling approach and discuss a number of subsequent models, which have recently resulted in the first in silico simulation model accepted as substitute to animal trials in the quest for optimal diabetes control. We then review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the analyses of their time-series signals, and on the opportunities that they present for automation of diabetes control. Finally, we review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers. We conclude with a brief discussion of the unique interactions between human physiology, behavioral events, engineering modeling and control relevant to diabetes.


Journal of diabetes science and technology | 2007

Model Predictive Control of Type 1 Diabetes: An in Silico Trial:

Lalo Magni; Davide Martino Raimondo; Luca Bossi; Chiara Dalla Man; Giuseppe De Nicolao; Boris P. Kovatchev; Claudio Cobelli

Background: The development of artificial pancreas has received a new impulse from recent technological advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic control expert, most notable of which are the inevitable time delays between glucose sensing and insulin actuation. Methods: A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) glucose control system. The starting point is a recently developed meal glucose-insulin model in health, which is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population distribution of the model parameters originally obtained in healthy 204 patients is modified to describe diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time MPC is designed for all the virtual patients from a unique input-output-linearized approximation of the full model based on the average population values of the parameters. The in silico trial simulates 4 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. Results: Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the control design relies solely on the average patient model. Only the weight on the glucose concentration error needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes only marginal deterioration of performance. In general, MPC results in better regulation than proportional integral derivative, limiting significantly the oscillation of glucose levels. Conclusions: The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are a capability to consider meal announcement information, delay compensation, and simplicity of tuning and implementation.


IEEE Transactions on Automatic Control | 1998

Stabilizing receding-horizon control of nonlinear time-varying systems

G. De Nicolao; Lalo Magni; Riccardo Scattolini

A receding horizon control scheme for nonlinear time-varying systems is proposed which is based on a finite-horizon optimization problem with a terminal state penalty. The penalty is equal to the cost that would be incurred over an infinite horizon by applying a (locally stabilizing) linear control law to the nonlinear system. Assuming only stabilizability of the linearized system around the desired equilibrium, the new scheme ensures exponential stability of the equilibrium. As the length of the optimization horizon goes from zero to infinity, the domain of attraction moves from the basin of attraction of the linear controller toward the basin of attraction of the infinite-horizon nonlinear controller. Stability robustness in the face of system perturbations is also established.


Diabetes | 2012

Fully Integrated Artificial Pancreas in Type 1 Diabetes: Modular Closed-Loop Glucose Control Maintains Near Normoglycemia

Marc D. Breton; Anne Farret; Daniela Bruttomesso; Stacey M. Anderson; Lalo Magni; Stephen D. Patek; Chiara Dalla Man; Jerome Place; Susan Demartini; Simone Del Favero; Chiara Toffanin; Colleen Hughes-Karvetski; Eyal Dassau; Howard Zisser; Francis J. Doyle; Giuseppe De Nicolao; Angelo Avogaro; Claudio Cobelli; Eric Renard; Boris P. Kovatchev

Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9–10 mmol/L. The CLC system was fully integrated using automated data transfer CGM→algorithm→CSII. All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 mmol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs.


Journal of diabetes science and technology | 2010

Multinational Study of Subcutaneous Model-Predictive Closed-Loop Control in Type 1 Diabetes Mellitus: Summary of the Results

Boris P. Kovatchev; Claudio Cobelli; Eric Renard; Stacey M. Anderson; Marc D. Breton; Stephen D. Patek; William L. Clarke; Daniela Bruttomesso; Alberto Maran; Silvana Costa; Angelo Avogaro; Chiara Dalla Man; Andrea Facchinetti; Lalo Magni; Giuseppe De Nicolao; Jerome Place; Anne Farret

Background: In 2008–2009, the first multinational study was completed comparing closed-loop control (artificial pancreas) to state-of-the-art open-loop therapy in adults with type 1 diabetes mellitus (T1DM). Methods: The design of the control algorithm was done entirely in silico, i.e., using computer simulation experiments with N = 300 synthetic “subjects” with T1DM instead of traditional animal trials. The clinical experiments recruited 20 adults with T1DM at the Universities of Virginia (11); Padova, Italy (6); and Montpellier, France (3). Open-loop and closed-loop admission was scheduled 3–4 weeks apart, continued for 22 h (14.5 h of which were in closed loop), and used a continuous glucose monitor and an insulin pump. The only difference between the two sessions was that insulin dosing was performed by the patient under a physicians supervision during open loop, whereas insulin dosing was performed by a control algorithm during closed loop. Results: In silico design resulted in rapid (less than 6 months compared to years of animal trials) and cost-effective system development, testing, and regulatory approvals in the United States, Italy, and France. In the clinic, compared to open-loop, closed-loop control reduced nocturnal hypoglycemia (blood glucose below 3.9 mmol/liter) from 23 to 5 episodes (p < .01) and increased the amount of time spent overnight within the target range (3.9 to 7.8 mmol/liter) from 64% to 78% (p = .03). Conclusions: In silico experiments can be used as viable alternatives to animal trials for the preclinical testing of insulin treatment strategies. Compared to open-loop treatment under identical conditions, closed-loop control improves the overnight regulation of diabetes.


Automatica | 2006

Technical communique: Stabilizing decentralized model predictive control of nonlinear systems

Lalo Magni; Riccardo Scattolini

This note presents a stabilizing decentralized model predictive control (MPC) algorithm for nonlinear discrete time systems. No information is assumed to be exchanged between local control laws. The stability proof relies on the inclusion of a contractive constraint in the formulation of the MPC problem.


IEEE Transactions on Automatic Control | 2008

Cooperative Constrained Control of Distributed Agents With Nonlinear Dynamics and Delayed Information Exchange: A Stabilizing Receding-Horizon Approach

Elisa Franco; Lalo Magni; Thomas Parisini; Marios M. Polycarpou; Davide Martino Raimondo

This paper addresses the problem of cooperative control of a team of distributed agents with decoupled nonlinear discrete-time dynamics, which operate in a common environment and exchange-delayed information between them. Each agent is assumed to evolve in discrete-time, based on locally computed control laws, which are computed by exchanging delayed state information with a subset of neighboring agents. The cooperative control problem is formulated in a receding-horizon framework, where the control laws depend on the local state variables (feedback action) and on delayed information gathered from cooperating neighboring agents (feedforward action). A rigorous stability analysis exploiting the input-to-state stability properties of the receding-horizon local control laws is carried out. The stability of the team of agents is then proved by utilizing small-gain theorem results.


Journal of diabetes science and technology | 2008

Evaluating the Efficacy of Closed-Loop Glucose Regulation via Control-Variability Grid Analysis

Lalo Magni; Davide Martino Raimondo; Chiara Dalla Man; Marc D. Breton; Stephen D. Patek; Giuseppe De Nicolao; Claudio Cobelli; Boris P. Kovatchev

Background: Advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin delivery are stimulating the development of a minimally invasive artificial pancreas that facilitates optimal glycemic regulation in diabetes. The key component of such a system is the blood glucose controller for which different design strategies have been investigated in the literature. In order to evaluate and compare the efficacy of the various algorithms, several performance indices have been proposed. Methods: A new tool—control-variability grid analysis (CVGA)—for measuring the quality of closed-loop glucose control on a group of subjects is introduced. It is a method for visualization of the extreme glucose excursions caused by a control algorithm in a group of subjects, with each subject presented by one data point for any given observation period. A numeric assessment of the overall level of glucose regulation in the population is given by the summary outcome of the CVGA. Results: It has been shown that CVGA has multiple uses: Comparison of different patients over a given time period, of the same patient over different time periods, of different control laws, and of different tuning of the same controller on the same population. Conclusions: Control-variability grid analysis provides a summary of the quality of glycemic regulation for a population of subjects and is complementary to measures such as area under the curve or low/high blood glucose indices, which characterize a single glucose trajectory for a single subject.


Systems & Control Letters | 1997

Stability margins of nonlinear receding-horizon control via inverse optimality

Lalo Magni; Rodolphe Sepulchre

Using the nonlinear analog of the Fake Riccati equation developed for linear systems, we derive an inverse optimality result for several receding-horizon control schemes. This inverse optimality result unifies stability proofs and shows that receding-horizon control possesses the stability margins of optimal control laws.


Biomedical Signal Processing and Control | 2009

Model predictive control of glucose concentration in type I diabetic patients: An in silico trial

Lalo Magni; Davide Martino Raimondo; C. Dalla Man; G. De Nicolao; Boris P. Kovatchev; Claudio Cobelli

Abstract In this paper, the feedback control of glucose concentration in type I diabetic patients using subcutaneous insulin delivery and subcutaneous continuous glucose monitoring is considered. A recently developed in silico model of glucose metabolism is employed to generate virtual patients on which control algorithms can be validated against interindividual variability. An in silico trial consisting of 100 patients is used to assess the performances of a linear output feedback and a nonlinear state-feedback model predictive controller, designed on the basis of the in silico model. More than satisfactory results are obtained in the great majority of virtual patients. The experiments highlight the crucial role of the anticipative feedforward action driven by the meal announcement information. Preliminary results indicate that further improvements may be achieved by means of a nonlinear model predictive control scheme.

Collaboration


Dive into the Lalo Magni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge