Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chie Yokoyama is active.

Publication


Featured researches published by Chie Yokoyama.


Bulletin of the American Meteorological Society | 2008

Mismo field experiment in the equatorial Indian Ocean

Kunio Yoneyama; Yukio Masumoto; Yoshifumi Kuroda; Masaki Katsumata; Keisuke Mizuno; Yukari N. Takayabu; Masanori Yoshizaki; Ali Shareef; Yasushi Fujiyoshi; Michael J. McPhaden; V. S. N. Murty; Ryuichi Shirooka; Kazuaki Yasunaga; Hiroyuki Yamada; Naoki Sato; Tomoki Ushiyama; Qoosaku Moteki; Ayako Seiki; Mikiko Fujita; Kentaro Ando; Hideaki Hase; Iwao Ueki; Takanori Horii; Chie Yokoyama; Tomoki Miyakawa

The Mirai Indian Ocean cruise for the Study of the Madden-Julian oscillation (MJO)-convection Onset (MISMO) was a field experiment that took place in the central equatorial Indian Ocean during October–December 2006, using the research vessel Mirai, a moored buoy array, and landbased sites at the Maldive Islands. The aim of MISMO was to capture atmospheric and oceanic features in the equatorial Indian Ocean when convection in the MJO was initiated. This article describes details of the experiment as well as some selected early results. Intensive observations using Doppler radar, radiosonde, surface meteorological measurements, and other instruments were conducted at 0°, 80.5°E, after deploying an array of surface and subsurface moorings around this site. The Mirai stayed within this buoy array area from 24 October through 25 November. After a period of stationary observations, underway meteorological measurements were continued from the Maldives to the eastern Indian Ocean in early December. All observatio...


Monthly Weather Review | 2008

A Statistical Study on Rain Characteristics of Tropical Cyclones Using TRMM Satellite Data

Chie Yokoyama; Yukari N. Takayabu

Three-dimensional rain characteristics of tropical cyclones (TCs) are statistically quantified, using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2003. Tropical cyclones are classified into four maximum intensity classes (34, 34–64, 64–128, and 128 kt) and three stages (developing, mature, and decaying). First, rain characteristics of TCs are compared with those of the equatorial (10°N–10°S) mean. A notable finding here is that the average stratiform rain ratio (SRR), which is the contribution from stratiform rain in the total rainfall, of TCs is 52%, while it is 44% for the equatorial oceanic mean and 46% for the Madden–Julian oscillation in its mature phase. Stronger rain is observed in TCs both for convective and stratiform rain. Second, radial rain characteristics of TCs suggest that the region 0–60 km can be classified as “the inner core,” and 60–500 km as “the rainband.” The inner core is characterized with small SRR, very high rain-top height, and a large flash rate, indicating the vigor of convective activity. In contrast, the rainband is characterized with large SRR and relatively large rain yield per flash, indicating a large rainfall amount with a moderate convective activity. An important implication of this study is that TCs are listed in the high end of tropical oceanic organized rain systems, in terms of the organization levels of rain. Last, we use the above composite results to calculate the rainfall contribution of TCs to total annual rainfall between 35°N and 35°S as 3.3% 0.1%.


Monthly Weather Review | 2012

Relationships between Rain Characteristics and Environment. Part II: Atmospheric Disturbances Associated with Shallow Convection over the Eastern Tropical Pacific

Chie Yokoyama; Yukari N. Takayabu

AbstractSynoptic-scale westward-propagating disturbances over the eastern Pacific (EP) are analyzed in boreal autumn, utilizing spectral analysis, composite analysis, and energy budget analysis. The results are compared with those over the western Pacific (WP).Spectral peaks of total precipitable water (TPW) and vertical velocity at 850 hPa (ω850), and outgoing longwave radiation (OLR) are detected at periods of ~3–7 days over the EP. Meanwhile over the WP, a spectral peak of OLR is pronounced, but peaks of TPW and ω850 are not detected. Composite analysis reveals that disturbances that have a coupled structure, with a vortex at its center near ~9°N and a mixed Rossby–gravity (MRG) wave–type disturbance, frequently exist over the EP. At the same time, the disturbances have a double-deck structure associated with divergence both in the upper and in the middle to lower troposphere. These disturbances are associated with both deep convection and congestus, which generate kinetic energy of the disturbance in ...


Journal of Climate | 2014

TRMM-Observed Shallow versus Deep Convection in the Eastern Pacific Related to Large-Scale Circulations in Reanalysis Datasets

Chie Yokoyama; Edward J. Zipser; Chuntao Liu

AbstractOver the eastern Pacific, recent studies have shown that a shallow large-scale meridional circulation with its return flow just above the boundary layer coexists with a deep Hadley circulation. This study examines how the vertical structure of large-scale circulations is related to satellite-observed individual precipitation properties over the eastern Pacific in boreal autumn. Three reanalysis datasets are used to describe differences in their behavior. The results are compared among reanalyses and three distinctly different convection periods, which are defined according to their radar echo depths. Shallow and deep circulations are shown to often coexist for each of the three periods, resulting in the multicell circulation structure. Deep (shallow) circulations preferentially appear in the mostly deep (shallow) convection period of radar echo depths. Thus, depth of convection basically corresponds to which circulation branch is dominant. This anticipated relationship between the circulation stru...


Monthly Weather Review | 2012

Relationships between Rain Characteristics and Environment. Part I: TRMM Precipitation Features and the Large-Scale Environment over the Tropical Pacific

Chie Yokoyama; Yukari N. Takayabu

AbstractDifferences in the characteristics of rain systems in the eastern Pacific (EP) intertropical convergence zone (ITCZ) and the western Pacific (WP) warm pool are quantitatively examined in relation to the large-scale environment. This study mainly uses precipitation feature (PF) data observed by the precipitation radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM). The PFs are classified into four types according to their areas and maximum heights. Rain from tall unorganized systems and very tall organized systems tends to be dominant in high-SST regions such as the WP. On the other hand, the EP has more rain from congestus and organized systems with moderate heights than the WP. It is shown that shallow rain from congestus and moderately deep rain from organized systems are highly correlated with shallow (1000–925 hPa) convergence fields with coefficients of 0.75 and 0.66, respectively. These relationships between characteristics of rain systems and the large-scale environment are ro...


Journal of Climate | 2014

Synoptic-Scale Dual Structure of Precipitable Water along the Eastern Pacific ITCZ

Guanghua Chen; Yukari N. Takayabu; Chie Yokoyama

AbstractUsing 10-yr high-resolution satellite and reanalysis data, the synoptic-scale dual structure of precipitable water (PW), in which the southern and northern bands straddled at the ITCZ produce zonally propagating meridional dipoles, is observed over the eastern Pacific (EP) during boreal summer and fall. Composites indicate that the PW dipole, concurrent with the dipole-like filtered divergence, has a shift to the west of the anomalously cyclonic circulation. The vertical structure of filtered meridional wind is characterized by a wavenumber-1 baroclinic mode, and the vertical motion has two peaks situated at 850 and 300 hPa, respectively. To the east of the PW dipole, the shallow convection is embedded within the deep convection, forming a multilevel structure of meridional wind on the ITCZ equatorward side. To the west of the PW dipole, the deep convection tends to be suppressed because of the invasion of midlevel dry air advected by northerly flows. The generation and propagation of the dual PW ...


Journal of Climate | 2014

A Contrast in Precipitation Characteristics across the Baiu Front near Japan. Part I: TRMM PR Observation

Chie Yokoyama; Yukari N. Takayabu; Sachie Kanada

AbstractContrasts in precipitation characteristics across the baiu front are examined with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data near Japan during June–July (1998–2011). The vertical structure of atmospheric stratification differs between the tropics and midlatitudes. On an average, the baiu front is found around the latitude that roughly divides the midlatitude atmosphere from the tropical atmosphere. Precipitation characteristics are compared between the southern and northern sides of the reference latitude of the baiu front, which is detected with equivalent potential temperature at 1000 hPa of 345 K in terms of the boundary between the tropics and midlatitudes.The results show that there are obvious differences in precipitation characteristics between the southern and northern sides. In the south, convective rainfall ratios (CRRs) are 40%–60%, which are larger than those in the north (20%–40%). Greater rainfall intensity and taller/deeper precipitation are also obser...


Journal of Climate | 2017

Precipitation Characteristics over East Asia in Early Summer: Effects of the Subtropical Jet and Lower-Tropospheric Convective Instability

Chie Yokoyama; Yukari N. Takayabu; Takeshi Horinouchi

AbstractA quasi-stationary front, called the baiu front, often appears during the early-summer rainy season in East Asia (baiu in Japan). The present study examines how precipitation characteristics during the baiu season are determined by the large-scale environment, using satellite observation three-dimensional precipitation data. Emphasis is placed on the effect of subtropical jet (STJ) and lower-tropospheric convective instability (LCI).A rainband appears together with a deep moisture convergence to the south of the STJ. Two types of mesoscale rainfall events (REs; contiguous rainfall areas), which are grouped by the stratiform precipitation ratio (SPR; stratiform precipitation over total precipitation), are identified: moderately stratiform REs (SPR of 0%–80%) representing tropical organized precipitation systems and highly stratiform REs (SPR of 80%–100%) representing midlatitude precipitation systems associated with extratropical cyclones. As the STJ becomes strong, rainfall from both types of meso...


Journal of Climate | 2009

Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part IV: Comparisons of Lookup Tables from Two- and Three-Dimensional Cloud-Resolving Model Simulations

Shoichi Shige; Yukari N. Takayabu; Satoshi Kida; Wei-Kuo Tao; Xiping Zeng; Chie Yokoyama; Tristan S. L’Ecuyer


Journal of Geophysical Research | 2012

Characteristics of tropical cyclone precipitation features over the western Pacific warm pool

Levi Thatcher; Yukari N. Takayabu; Chie Yokoyama; Zhaoxia Pu

Collaboration


Dive into the Chie Yokoyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. McPhaden

Pacific Marine Environmental Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tristan S. L’Ecuyer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Wei-Kuo Tao

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge