Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chien-Chung Peng is active.

Publication


Featured researches published by Chien-Chung Peng.


Scientific Reports | 2016

Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device.

Bishnubrata Patra; Chien-Chung Peng; Wei-Hao Liao; Chau-Hwang Lee; Yi-Chung Tung

Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.


Biomicrofluidics | 2013

A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis.

Bishnubrata Patra; Ying-Hua Chen; Chien-Chung Peng; Shiang-Chi Lin; Chau-Hwang Lee; Yi-Chung Tung

Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell-cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers.


Biomicrofluidics | 2014

Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes

Bishnubrata Patra; Yu-Sheng Peng; Chien-Chung Peng; Wei-Hao Liao; Yu-An Chen; Keng-Hui Lin; Yi-Chung Tung; Chau-Hwang Lee

We developed a microfluidic device to culture cellular spheroids of controlled sizes and suitable for live cell imaging by selective plane illumination microscopy (SPIM). We cocultured human umbilical vein endothelial cells (HUVECs) within the spheroids formed by hepatocellular carcinoma cells, and studied the distributions of the HUVECs over time. We observed that the migration of HUVECs depended on the size of spheroids. In the spheroids of ∼200 μm diameters, HUVECs migrated outwards to the edges within 48 h; while in the spheroids of ∼250 μm diameters, there was no outward migration of the HUVECs up to 72 h. In addition, we studied the effects of pro-angiogenic factors, namely, vascular endothelial growth factor (VEGF) and fibroblast growth factor (β-FGF), on the migration of HUVECs in the carcinoma cell spheroid. The outward migration of HUVECs in 200 μm spheroids was hindered by the treatment with VEGF and β-FGF. Moreover, some of the HUVECs formed hollow lumen within 72 h under VEGF and β-FGF treatment. The combination of SPIM and microfluidic devices gives high resolution in both spatial and temporal domains. The observation of HUVECs in spheroids provides us insight on tumor vascularization, an ideal disease model for drug screening and fundamental studies.


Biomicrofluidics | 2013

Generation of nitric oxide gradients in microfluidic devices for cell culture using spatially controlled chemical reactions

Ying-Hua Chen; Chien-Chung Peng; Yung-Ju Cheng; Jin-Gen Wu; Yi-Chung Tung

In this paper, we develop a microfluidic device capable of generating nitric oxide (NO) gradients for cell culture using spatially controlled chemical reactions. NO plays an essential role in various biological activities, including nervous, immune, and cardiovascular systems. The device developed in this paper can control NO gradients without utilizing expensive and hazardous high purity NO gas sources or direct addition of NO donors. Consequently, the device provides an efficient, cost-effective, robust, and stable platform to generate NO gradients for cell culture studies. In the experiments, NO gradients are first characterized using a NO-sensitive fluorescence dye, and cell experiments using aortic smooth muscle cells are conducted. The results demonstrate that the device can alter the intracellular NO concentrations and further affect the Ca(2+) concentration oscillation for the cells. The device developed in this paper provides a powerful platform for researchers better study the biological roles of NO and its spatial distribution using in vitro cell models with minimal instrumentation.


Journal of Visualized Experiments | 2017

Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients

Hung-Ju Chiang; Sih-Ling Yeh; Chien-Chung Peng; Wei-Hao Liao; Yi-Chung Tung

This paper reports a microfluidic device made of polydimethylsiloxane (PDMS) with an embedded polycarbonate (PC) thin film to study cell migration under combinations of chemical and oxygen gradients. Both chemical and oxygen gradients can greatly affect cell migration in vivo; however, due to technical limitations, very little research has been performed to investigate their effects in vitro. The device developed in this research takes advantage of a series of serpentine-shaped channels to generate the desired chemical gradients and exploits a spatially confined chemical reaction method for oxygen gradient generation. The directions of the chemical and oxygen gradients are perpendicular to each other to enable straightforward migration result interpretation. In order to efficiently generate the oxygen gradients with minimal chemical consumption, the embedded PC thin film is utilized as a gas diffusion barrier. The developed microfluidic device can be actuated by syringe pumps and placed into a conventional cell incubator during cell migration experiments to allow for setup simplification and optimized cell culture conditions. In cell experiments, we used the device to study migrations of adenocarcinomic human alveolar basal epithelial cells, A549, under combinations of chemokine (stromal cell-derived factor, SDF-1α) and oxygen gradients. The experimental results show that the device can stably generate perpendicular chemokine and oxygen gradients and is compatible with cells. The migration study results indicate that oxygen gradients may play an essential role in guiding cell migration, and cellular behavior under combinations of gradients cannot be predicted from those under single gradients. The device provides a powerful and practical tool for researchers to study interactions between chemical and oxygen gradients in cell culture, which can promote better cell migration studies in more in vivo-like microenvironments.


Biomicrofluidics | 2015

Flip channel: A microfluidic device for uniform-sized embryoid body formation and differentiation

Ying-Hua Chen; Chien-Chung Peng; Yi-Chung Tung

This paper reports a two-layered polydimethylsiloxane microfluidic device-Flip channel, capable of forming uniform-sized embryoid bodies (EBs) and performing stem cell differentiation within the same device after flipping the microfluidic channel. The size of EBs can be well controlled by designing the device geometries, and EBs with multiple sizes can be formed within a single device to study EB size-dependent stem cell differentiation. During operation of the device, cells are positioned in the designed positions. As a result, observation and monitoring specific population of cells can be achieved for further analysis. In addition, after flipping the microfluidic channel, stem cell differentiation from the EBs can be performed on an unconfined flat surface that is desired for various differentiation processes. In the experiments, murine embryonic stem cells (ES-D3) are cultured and formed EBs inside the developed device. The size of EBs is well controlled inside the device, and the neural differentiation is performed on the formed EBs after flipping the channel. The EB size-dependent stem cell differentiation is studied using the device to demonstrate its functions. The device provides a useful tool to study stem cell differentiation without complicated device fabrication and tedious cell handling under better-controlled microenvironments.


Scientific Reports | 2016

Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

Chien-Han Lin; Chien-Kai Wang; Yu-An Chen; Chien-Chung Peng; Wei-Hao Liao; Yi-Chung Tung

In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.


Scientific Reports | 2018

Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on PDMS Substrate

Chiao-Yun Chang; Hsiang-Ting Lin; Ming-Sheng Lai; Teng-Yi Shieh; Chien-Chung Peng; Min-Hsiung Shih; Yi-Chung Tung

The small sized, flexible, high-performed and bio-compatible sensing devices are the critical elements to realize the bio-related detection or on-site health monitoring systems. In this work, the flexible localized surface plasmon resonance (LSPR) bio-sensors were demonstrated by integrating the metal–insulator–metal (MIM) nanodisks with bio-compatible polydimethylsiloxane (PDMS) substrate. The different geometries of MIM nanodisk sensors were investigated and optimized to enhance the spatial overlap of the LSPR waves with the environment, which lead to a high sensitivity of 1500 nm/RIU. The omni-directional characteristics of LSPR resonances were beneficial for maintaining the device sensitivity stable under various bending curvatures. Furthermore, the flexible MIM nanodisk LSPR sensor was applied to detect A549 cancer cells in PBS+ solution. The absorption peak of the MIM-disk LSPR sensor obviously redshift to easily distinguish between the phosphate buffered saline (PBS+) solution with A549 cancer cells and without cells. Therefore, the flexible MIM nanodisk LSPR sensor is suitable to develop on-chip microfluidic biosensors for detection of cancer cells on nonplanar surfaces.


RSC Advances | 2018

Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy

Sreerupa Sarkar; Chien-Chung Peng; Chiung Wen Kuo; Di-Yen Chueh; Hsiao-Mei Wu; Yuan-Hsuan Liu; Peilin Chen; Yi-Chung Tung

Three-dimensional cell spheroid culture using microfluidic devices provides a convenient in vitro model for studying tumour spheroid structures and internal microenvironments. Recent studies suggest that oxygen deprived zones inside solid tumors are responsible for stimulating local cytokines and endothelial vasculature proliferation during angiogenesis. In this work, we develop an integrated approach combining microfluidic devices and multi-photon laser scanning microscopy (MPLSM) to study variations in oxygen tension within live spheroids of human osteosarcoma cells. Uniform shaped, size-controlled spheroids are grown and then harvested using a polydimethylsiloxane (PDMS) based microfluidic device. Fluorescence live imaging of the harvested spheroids is performed using MPLSM and a commercially available oxygen sensitive dye, Image-iT Red, to observe the oxygen tension variation within the spheroids and those co-cultured with monolayers of human umbilical vein endothelial cells (HUVECs). Oxygen tension variations are observed within the spheroids with diameters ranging from 90 ± 10 μm to 140 ± 10 μm. The fluorescence images show that the low-oxygenated cores diminish when spheroids are co-cultured with HUVEC monolayers for 6 hours to 8 hours. In the experiments, spheroids subjected to HUVEC conditioned medium treatment and with a cell adherent substrate are also measured and analyzed to study their significance on oxygen tension within the spheroids. The results show that the oxygenation within the spheroids is improved when the spheroids are cultured under those conditions. Our work presents an efficient method to study oxygen tension variation within live tumor spheroids under the influence of endothelial cells and conditioned medium. The method can be exploited for further investigation of tumor oxygen microenvironments during angiogenesis.


international conference on solid state sensors actuators and microsystems | 2017

A microfluidic device to study effects of physical stimulation and steroid treatment on lung epithelial cell surfactant protein expression

Sih-Ling Yeh; Ting-Ru Lin; Chien-Chung Peng; Wei-Hao Liao; Yi-Chung Tung

This paper reports a microfluidic cell culture device made of polydimethylsiloxane (PDMS) capable of mimicking lung physiological physical stimulation, including cyclic strain and hydrostatic pressure. We demonstrate the promotion of pulmonary surfactant protein C (SPC) expression of lung epithelial cells under physical stimulation, which is comparable to conventional steroid treatment. The results suggest synergic effects of physical stimulation and steroid treatments on SPC expression, and demonstrate great potential for pulmonary research regarding physical mechanism from cell perspectives using the developed microfluidic device.

Collaboration


Dive into the Chien-Chung Peng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiang-Chi Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge