Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei-Hao Liao is active.

Publication


Featured researches published by Wei-Hao Liao.


Lab on a Chip | 2011

Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems

Chueh-Yu Wu; Wei-Hao Liao; Yi-Chung Tung

This paper reports a novel pressure sensor with an electrical readout based on electrofluidic circuits constructed by ionic liquid (IL)-filled microfluidic channels. The developed pressure sensor can be seamlessly fabricated into polydimethylsiloxane (PDMS) microfluidic systems using the well-developed multilayer soft lithography (MSL) technique without additional assembly or sophisticated cleanroom microfabrication processes. Therefore, the device can be easily scaled up and is fully disposable. The pressure sensing is achieved by measuring the pressure-induced electrical resistance variation of the constructed electrofluidic resistor. In addition, an electrofluidic Wheatstone bridge circuit is designed for accurate and stable resistance measurements. The pressure sensor is characterized using pressurized nitrogen gas and various liquids which flow into the microfluidic channels. The experimental results demonstrate the great long-term stability (more than a week), temperature stability (up to 100 °C), and linear characteristics of the developed pressure sensing scheme. Consequently, the integrated microfluidic pressure sensor developed in this paper is promising for better monitoring and for characterizing the flow conditions and liquid properties inside the PDMS microfluidic systems in an easier manner for various lab on a chip applications.


Scientific Reports | 2016

Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device.

Bishnubrata Patra; Chien-Chung Peng; Wei-Hao Liao; Chau-Hwang Lee; Yi-Chung Tung

Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.


Biomicrofluidics | 2014

Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes

Bishnubrata Patra; Yu-Sheng Peng; Chien-Chung Peng; Wei-Hao Liao; Yu-An Chen; Keng-Hui Lin; Yi-Chung Tung; Chau-Hwang Lee

We developed a microfluidic device to culture cellular spheroids of controlled sizes and suitable for live cell imaging by selective plane illumination microscopy (SPIM). We cocultured human umbilical vein endothelial cells (HUVECs) within the spheroids formed by hepatocellular carcinoma cells, and studied the distributions of the HUVECs over time. We observed that the migration of HUVECs depended on the size of spheroids. In the spheroids of ∼200 μm diameters, HUVECs migrated outwards to the edges within 48 h; while in the spheroids of ∼250 μm diameters, there was no outward migration of the HUVECs up to 72 h. In addition, we studied the effects of pro-angiogenic factors, namely, vascular endothelial growth factor (VEGF) and fibroblast growth factor (β-FGF), on the migration of HUVECs in the carcinoma cell spheroid. The outward migration of HUVECs in 200 μm spheroids was hindered by the treatment with VEGF and β-FGF. Moreover, some of the HUVECs formed hollow lumen within 72 h under VEGF and β-FGF treatment. The combination of SPIM and microfluidic devices gives high resolution in both spatial and temporal domains. The observation of HUVECs in spheroids provides us insight on tumor vascularization, an ideal disease model for drug screening and fundamental studies.


Analytical Chemistry | 2018

Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures

Tse-Ang Lee; Wei-Hao Liao; Yi-Fan Wu; Yeng-Long Chen; Yi-Chung Tung

This paper reports a microfluidic viscometer with an integrated pressure sensor based on electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop, flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various shear rates (3-500 1/s) and temperatures (4-70 °C) with small sample volume (less than 400 μL). The developed sensor-integrated microfluidic viscometer is made of poly(dimethylsiloxane) (PDMS) with transparent electrofluidic circuit, which makes it feasible to simultaneously image samples under tests. In addition, the entire device is disposable to prevent cross-contamination between samples, which is desired for various chemical and biomedical applications. In the experiments, viscosities of Newtonian fluids, glycerol water solutions with different concentrations and a mixture of pyrogallol and sodium hydroxide (NaOH), and non-Newtonian fluids, xanthan gum solutions and human blood samples, have been characterized. The results demonstrate that the developed microfluidic viscometer provides a convenient and useful platform for practical viscosity characterization of fluidic samples for a wide variety of applications.


Oncogene | 2017

Elevated hydrostatic pressure enhances the motility and enlarges the size of the lung cancer cells through aquaporin upregulation mediated by caveolin-1 and ERK1/2 signaling

Yu-Chiu Kao; Jr Jheng; Huei-Jyuan Pan; Wei-Hao Liao; Chau-Hwang Lee; Pl Kuo

The mechanical characteristics presented in cancer microenvironment are known to have pivotal roles in cancer metastasis, which accounts for the leading cause of death from malignant tumors. However, while a uniformly distributed high interstitial fluid pressure (IFP) is a common feature in solid tumors, the effects of high IFP on the motility and invasiveness of cancer cells remain obscure. Using cell-culture devices that simulated increased IFP conditions by applying hydrostatic pressure (HP) ranging from 0 to 20 mm Hg to the cells, we found that the elevated HPs increased the migration speeds, invasiveness, cell volume, filopodial number and aquaporin-1 (AQP1), Snail and vinculin expression levels, as well as phosphorylation of caveolin-1 and extracellular signal–regulated kinase1/2 (ERK1/2), in the lung cancer cells CL1-5 and A549. The increases of migration speed and cell volume correlated temporally with the increase of AQP1 expression. The elevated HP-induced migration acceleration was hindered by AQP1 knockdown using small interfering RNA (siRNA) transfection. Inhibition of ERK1/2 phosphorylation using the mitogen-activated protein kinase kinase inhibitor PD98059 abrogated the elevated HP-induced AQP1 upregulation and migration acceleration in the cancer cells. Caveolin-1 knockdown by siRNA transfection attenuated the HP-induced, ERK1/2-depedent AQP1 upregulation and migration acceleration. Further biochemical studies revealed that the caveolin-1 activation-driven ERK1/2 signaling is mediated by Akt1/2 phosphorylation. By contrast, the elevated HPs had negligible effects on the migration speed and volume of normal bronchial epithelial cells. These results disclose a novel mechanism relating high IFP to the invasiveness of cancer cells and highlight potential targets to impede cancer spreading.


Journal of Visualized Experiments | 2017

Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients

Hung-Ju Chiang; Sih-Ling Yeh; Chien-Chung Peng; Wei-Hao Liao; Yi-Chung Tung

This paper reports a microfluidic device made of polydimethylsiloxane (PDMS) with an embedded polycarbonate (PC) thin film to study cell migration under combinations of chemical and oxygen gradients. Both chemical and oxygen gradients can greatly affect cell migration in vivo; however, due to technical limitations, very little research has been performed to investigate their effects in vitro. The device developed in this research takes advantage of a series of serpentine-shaped channels to generate the desired chemical gradients and exploits a spatially confined chemical reaction method for oxygen gradient generation. The directions of the chemical and oxygen gradients are perpendicular to each other to enable straightforward migration result interpretation. In order to efficiently generate the oxygen gradients with minimal chemical consumption, the embedded PC thin film is utilized as a gas diffusion barrier. The developed microfluidic device can be actuated by syringe pumps and placed into a conventional cell incubator during cell migration experiments to allow for setup simplification and optimized cell culture conditions. In cell experiments, we used the device to study migrations of adenocarcinomic human alveolar basal epithelial cells, A549, under combinations of chemokine (stromal cell-derived factor, SDF-1α) and oxygen gradients. The experimental results show that the device can stably generate perpendicular chemokine and oxygen gradients and is compatible with cells. The migration study results indicate that oxygen gradients may play an essential role in guiding cell migration, and cellular behavior under combinations of gradients cannot be predicted from those under single gradients. The device provides a powerful and practical tool for researchers to study interactions between chemical and oxygen gradients in cell culture, which can promote better cell migration studies in more in vivo-like microenvironments.


international conference on micro electro mechanical systems | 2011

A seamlessly integrated microfluidic pressure sensor based on an ionic liquid electrofluidic circuit

Chueh-Yu Wu; Wei-Hao Liao; Yi-Chung Tung

A novel pressure sensor with electrical readout based on ionic liquid (IL) electrofluidic circuit is reported in this paper. The pressure measurement is achieved by measuring the electrical property variation of the circuit induced by the pressure inside the microfluidic devices. The sensor integrated microfluidic device is made of polydimethylsiloxane (PDMS), and can be fabricated using the well-developed multilayer soft lithography (MSL) without additional microfabrication processes. Therefore, the pressure sensor is fully disposable, and can be seamlessly integrated into PDMS microfluidic devices. Moreover, an IL electrofluidic Wheatstone bridge is designed to provide the device linear output, great long-term and thermal stability. In this paper, the sensor performance characterization using pressurized gas and liquid flowing in the microfluidic channel have been conducted. The experimental results demonstrate the advantages of the device. The developed pressure sensor has great potentials for the development of next generation sensor-integrated microfluidic systems.


Scientific Reports | 2016

Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

Chien-Han Lin; Chien-Kai Wang; Yu-An Chen; Chien-Chung Peng; Wei-Hao Liao; Yi-Chung Tung

In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.


Journal of Visualized Experiments | 2018

One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes

Chien-Kai Wang; Wei-Hao Liao; Hsiao-Mei Wu; Yi-Chung Tung

Polydimethylsiloxane (PDMS) materials are substantially exploited to fabricate microfluidic devices by using soft lithography replica molding techniques. Customized channel layout designs are necessary for specific functions and integrated performance of microfluidic devices in numerous biomedical and chemical applications (e.g., cell culture, biosensing, chemical synthesis, and liquid handling). Owing to the nature of molding approaches using silicon wafers with photoresist layers patterned by photolithography as master molds, the microfluidic channels commonly have regular cross sections of rectangular shapes with identical heights. Typically, channels with multiple heights or different geometric sections are designed to possess particular functions and to perform in various microfluidic applications (e.g., hydrophoresis is used for sorting particles and in continuous flows for separating blood cells6 , 7 , 8 , 9). Therefore, a great deal of effort has been made in constructing channels with various sections through multiple-step approaches like photolithography using several photoresist layers and assembly of different PDMS thin sheets. Nevertheless, such multiple-step approaches usually involve tedious procedures and extensive instrumentation. Furthermore, the fabricated devices may not perform consistently and the resulted experimental data may be unpredictable. Here, a one-step approach is developed for the straightforward fabrication of microfluidic channels with different geometric cross sections through PDMS sequential wet etching processes, that introduces etchant into channels of planned single-layer layouts embedded in PDMS materials. Compared to the existing methods for manufacturing PDMS microfluidic channels with different geometries, the developed one-step approach can significantly simplify the process to fabricate channels with non-rectangular sections or various heights. Consequently, the technique is a way of constructing complex microfluidic channels, which provides a fabrication solution for the advancement of innovative microfluidic systems.


international conference on solid state sensors actuators and microsystems | 2017

Fully disposable and optically transparent microfluidic viscometer based on electrofluidic pressure sensor

Tse-Ang Lee; Wei-Hao Liao; Yi-Chung Tung

This paper reports a microfluidic viscometer with an embedded pressure sensor constructed using electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a great pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop and flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various temperatures. The developed sensor-integrated microfluidic viscometer is made of polydimethylsiloxane (PDMS) with transparent electrofluidic circuit makes it feasible to real-time monitor samples under tests. In addition, the entire device is fully disposable to prevent cross contamination between samples, which is desired for various chemical and biomedical applications.

Collaboration


Dive into the Wei-Hao Liao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge