Chien-Hung Huang
National Formosa University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chien-Hung Huang.
Iet Systems Biology | 2014
Chien-Hung Huang; Min-You Wu; Peter Mu-Hsin Chang; Chi-Ying F. Huang; Ka-Lok Ng
Lung cancer is one of the leading causes of death in both the USA and Taiwan, and it is thought that the cause of cancer could be because of the gain of function of an oncoprotein or the loss of function of a tumour suppressor protein. Consequently, these proteins are potential targets for drugs. In this study, differentially expressed genes are identified, via an expression dataset generated from lung adenocarcinoma tumour and adjacent non-tumour tissues. This study has integrated many complementary resources, that is, microarray, protein-protein interaction and protein complex. After constructing the lung cancer protein-protein interaction network (PPIN), the authors performed graph theory analysis of PPIN. Highly dense modules are identified, which are potential cancer-associated protein complexes. Up- and down-regulated communities were used as queries to perform functional enrichment analysis. Enriched biological processes and pathways are determined. These sets of up- and down-regulated genes were submitted to the Connectivity Map web resource to identify potential drugs. The authors findings suggested that eight drugs from DrugBank and three drugs from NCBI can potentially reverse certain up- and down-regulated genes expression. In conclusion, this study provides a systematic strategy to discover potential drugs and target genes for lung cancer.
Computers in Biology and Medicine | 2013
Nilubon Kurubanjerdjit; Chien-Hung Huang; Yu-Liang Lee; Jeffrey J. P. Tsai; Ka-Lok Ng
MicroRNAs are small, endogenous RNAs found in many different species and are known to have an influence on diverse biological phenomena. They also play crucial roles in plant biological processes, such as metabolism, leaf sidedness and flower development. However, the functional roles of most microRNAs are still unknown. The identification of closely related microRNAs and target genes can be an essential first step towards the discovery of their combinatorial effects on different cellular states. A lot of research has tried to discover microRNAs and target gene interactions by implementing machine learning classifiers with target prediction algorithms. However, high rates of false positives have been reported as a result of undetermined factors which will affect recognition. Therefore, integrating diverse techniques could improve the prediction. In this paper we propose identifying microRNAs target of Arabidopsis thaliana by integrating prediction scores from PITA, miRanda and RNAHybrid algorithms used as a feature vector of microRNA-target interactions, and then implementing SVM, random forest tree and neural network machine learning algorithms to make final predictions by majority voting. Furthermore, microRNA target genes are linked with their protein-protein interaction (PPI) partners. We focus on plant resistance genes and transcription factor information to provide new insights into plant pathogen interaction networks. Downstream pathways are characterized by the Jaccard coefficient, which is implemented based on Gene Ontology. The database is freely accessible at http://ppi.bioinfo.asia.edu.tw/At_miRNA/.
bioinformatics and bioengineering | 2004
Ka-Lok Ng; Chien-Hung Huang
We employed the random graph theory approach to analyze the protein-protein interacting database DIP, for six different species (S. cerevisiae, H. pylori, E. coli, H. sapiens, M. musculus and D. melanogaster). Two global topological parameters (node connectivity, average diameter) were used to characterize these protein-protein interaction networks (PINs). The logarithm of the connectivity distribution vs. the logarithm of connectivity plot indicates that it follows a power law behavior quite well for the six species. We also demonstrated that the interaction networks are quite robust when subject to random perturbation. Node degree correlation study supports the earlier results that nodes of low connectivity are correlated, whereas nodes of high connectivity are not directly linked. These results provided some evidence suggesting such correlation relations might be a general feature of the PINs across different species.
BioMed Research International | 2015
Chien-Hung Huang; Huai-Shun Peng; Ka-Lok Ng
Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Araguess method by employing the protein-protein interaction (PPI) data, domain-domain interaction (DDI) data, weighted domain frequency score (DFS), and cancer linker degree (CLD) data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I) using individual algorithm, (II) combining algorithms, and (III) combining the same classification types of algorithms. When compared with Araguess method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.
BioMed Research International | 2014
Chien-Hung Huang; Peter Mu-Hsin Chang; Yong-Jie Lin; Cheng-Hsu Wang; Chi-Ying F. Huang; Ka-Lok Ng
Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC) is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.
BMC Bioinformatics | 2016
Chien-Hung Huang; Peter Mu-Hsin Chang; Chia-Wei Hsu; Chi-Ying F. Huang; Ka-Lok Ng
BackgroundNon-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development process of drugs, as well as reducing side effects.ResultsThis work integrates two approaches - machine learning algorithms and topological parameter-based classification - to develop a novel pipeline of drug repositioning to analyze four lung cancer microarray datasets, enriched biological processes, potential therapeutic drugs and targeted genes for NSCLC treatments. A total of 7 (8) and 11 (12) promising drugs (targeted genes) were discovered for treating early- and late-stage NSCLC, respectively. The effectiveness of these drugs is supported by the literature, experimentally determined in-vitro IC50 and clinical trials. This work provides better drug prediction accuracy than competitive research according to IC50 measurements.ConclusionsWith the novel pipeline of drug repositioning, the discovery of enriched pathways and potential drugs related to NSCLC can provide insight into the key regulators of tumorigenesis and the treatment of NSCLC. Based on the verified effectiveness of the targeted drugs predicted by this pipeline, we suggest that our drug-finding pipeline is effective for repositioning drugs.
Computational Biology and Chemistry | 2016
David Agustriawan; Chien-Hung Huang; Jim Jinn Chyuan Sheu; Shan-Chih Lee; Jeffrey J. P. Tsai; Nilubon Kurubanjerdjit; Ka-Lok Ng
Epigenetic regulation has been linked to the initiation and progression of cancer. Aberrant expression of microRNAs (miRNAs) is one such mechanism that can activate or silence oncogenes (OCGs) and tumor suppressor genes (TSGs) in cells. A growing number of studies suggest that miRNA expression can be regulated by methylation modification, thus triggering cancer development. However, there is no comprehensive in silico study concerning miRNA regulation by direct DNA methylation in cancer. Ovarian serous cystadenocarcinoma (OSC) was therefore chosen as a tumor model for the present work. Twelve batches of OSC data, with at least 35 patient samples in each batch, were obtained from The Cancer Genome Atlas (TCGA) database. The Spearman rank correlation coefficient (SRCC) was used to quantify the correlation between the CpG DNA methylation level and miRNA expression level. Meta-analysis was performed to reduce the effects of biological heterogeneity among different batches. MiRNA-target interactions were also inferred by computing SRCC and meta-analysis to assess the correlation between miRNA expression and cancer-associated gene expression and the interactions were further validated by a query against the miRTarBase database. A total of 26 potential epigenetic-regulated miRNA genes that can target OCGs or TSGs in OSC were found to show biological relevance between DNA methylation and miRNA gene expression. Furthermore, some of the identified DNA-methylated miRNA genes; for instance, the miR-200 family, were previously identified as epigenetic-regulated miRNAs and correlated with poor survival of ovarian cancer. We also found that several miRNA target genes, BTG3, NDN, HTRA3, CDC25A, and HMGA2 were also related to the poor outcomes in ovarian cancer. The present study proposed a systematic strategy to construct highly confident epigenetic-regulated miRNA pathways for OSC. The findings are validated and are in line with the literature. The inclusion of direct DNA methylated miRNA events may offer another layer of explanation that along with genetics can give a better understanding of the carcinogenesis process.
research in computational molecular biology | 2005
Chien-Hung Huang; Jywe-Fei Fang; Jeffrey J. P. Tsai; Ka-Lok Ng
The stability and fragility of four species protein-protein interaction networks (PINs) are studied by investigating their robustness, i.e. their topological parameters retain a similar system behavior with respect to four different types of perturbations. Four types of perturbations are considered; that is (i) network nodes are randomly removed (failure), (ii) the most connected node is successively removed (attack), (iii) interaction edges are rewired randomly, and (iv) edges are randomly deleted. At most 50% of network nodes or edges are deleted or rewired. It is demonstrated that PINs are quite robust with respect to failure, attack, random rewiring and edge deletion, that is the average diameters for perturbed networks differ from the unperturbed cases have a difference less than 13%, which is relative small in comparison with WWW and the Internet results. These results suggest that PINs network topologies are robust with respect to perturbations.
PeerJ | 2016
Chien-Hung Huang; Jin-Shuei Ciou; Shun-Tsung Chen; Victor C. Kok; Yi Chung; Jeffrey J. P. Tsai; Nilubon Kurubanjerdjit; Chi-Ying F. Huang; Ka-Lok Ng
Background Abnormal proliferation of vascular smooth muscle cells (VSMC) is a major cause of cardiovascular diseases (CVDs). Many studies suggest that vascular injury triggers VSMC dedifferentiation, which results in VSMC changes from a contractile to a synthetic phenotype; however, the underlying molecular mechanisms are still unclear. Methods In this study, we examined how VSMC responds under mechanical stress by using time-course microarray data. A three-phase study was proposed to investigate the stress-induced differentially expressed genes (DEGs) in VSMC. First, DEGs were identified by using the moderated t-statistics test. Second, more DEGs were inferred by using the Gaussian Graphical Model (GGM). Finally, the topological parameters-based method and cluster analysis approach were employed to predict the last batch of DEGs. To identify the potential drugs for vascular diseases involve VSMC proliferation, the drug-gene interaction database, Connectivity Map (cMap) was employed. Success of the predictions were determined using in-vitro data, i.e. MTT and clonogenic assay. Results Based on the differential expression calculation, at least 23 DEGs were found, and the findings were qualified by previous studies on VSMC. The results of gene set enrichment analysis indicated that the most often found enriched biological processes are cell-cycle-related processes. Furthermore, more stress-induced genes, well supported by literature, were found by applying graph theory to the gene association network (GAN). Finally, we showed that by processing the cMap input queries with a cluster algorithm, we achieved a substantial increase in the number of potential drugs with experimental IC50 measurements. With this novel approach, we have not only successfully identified the DEGs, but also improved the DEGs prediction by performing the topological and cluster analysis. Moreover, the findings are remarkably validated and in line with the literature. Furthermore, the cMap and DrugBank resources were used to identify potential drugs and targeted genes for vascular diseases involve VSMC proliferation. Our findings are supported by in-vitro experimental IC50, binding activity data and clinical trials. Conclusion This study provides a systematic strategy to discover potential drugs and target genes, by which we hope to shed light on the treatments of VSMC proliferation associated diseases.
ieee international conference on cognitive informatics | 2005
Po-Han Lee; Chien-Hung Huang; Jywe-Fei Fang; Jeffrey J. P. Tsai; Ka-Lok Ng
We employ the random graph theory approach to analyze the protein-protein interaction database DIP, for seven species. Several global topological parameters are used to characterize the protein-protein interaction networks (PINs) for each species. We find that the seven PINs are well approximated by the scale-free networks and the hierarchical models possibly except fruit fly. In particular, we determine that the E. coli and the yeast PINs are well represented by the stochastic and deterministic hierarchical network models respectively. These results suggesting that the hierarchical network model is a better description for certain species PINs, and it may not be an universal feature across different species. Furthermore, we demonstrate that PINs are quite robust when subject to random perturbation where up to 50% of the nodes are rewired or removed or 50% of edges are removed. Average node degree correlation study supports the fact that nodes of low connectivity are correlated, whereas nodes of high connectivity are not directly linked.