Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chien-Wen Hung is active.

Publication


Featured researches published by Chien-Wen Hung.


Journal of the American Chemical Society | 2013

Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase.

Stefan Düsterhöft; Sascha Jung; Chien-Wen Hung; Andreas Tholey; Frank D. Sönnichsen; Joachim Grötzinger; Inken Lorenzen

A disintegrin and metalloprotease-17 (ADAM17) is a major sheddase responsible for the regulation of a wide range of biological processes, like cellular differentiation, regeneration, or cancer progression. Hitherto, the mechanism regulating the enzymatic activity of ADAM17 is poorly understood. Recently, protein-disulfide isomerase (PDI) was shown to interact with ADAM17 and to down-regulate its enzymatic activity. Here we demonstrate by NMR spectroscopy and tandem-mass spectrometry that PDI directly interacts with the membrane-proximal domain (MPD), a domain of ADAM17 involved in its dimerization and substrate recognition. PDI catalyzes an isomerization of disulfide bridges within the thioredoxin motif C600XXC603 of the MPD and results in a drastic structural change between an active open state and an inactive closed conformation. This conformational change of the MPD putatively acts as a molecular switch, facilitating a global reorientation of the extracellular domains in ADAM17 and regulating its shedding activity.


Analytical Chemistry | 2012

Tandem Mass Tag Protein Labeling for Top-Down Identification and Quantification

Chien-Wen Hung; Andreas Tholey

Top-down mass spectrometry holds tremendous potential for characterization and quantification of intact proteins. So far, however, very few studies have combined top-down proteomics with protein quantification. In view of the success of isobaric mass tags in quantitative bottom-up proteomics, we applied the tandem mass tag (TMT) technology to label intact proteins and examined the feasibility to directly quantify TMT-labeled proteins. A top-down platform encompassing separation via ion-pair reversed-phase liquid chromatography using monolithic stationary phases coupled online to an LTQ-Orbitrap Velos electron-transfer dissociation (ETD) mass spectrometer (MS) was established to simultaneously identify and quantify TMT-labeled proteins. The TMT-labeled proteins were found to be readily dissociated under high-energy collision dissociation (HCD) activation. The liberated reporter ions delivered expected ratios over a wide dynamic range independent of the protein charge state. Furthermore, protein sequence tags generated either by low-energy HCD or ETD activation along with the intact protein mass information allow for confident identification of small proteins below 35 kDa. We conclude that the approach presented in this pilot study paves the way for further developments and numerous applications for straightforward, accurate, and multiplexed quantitative analysis in protein chemistry and proteomics.


PLOS ONE | 2014

Characterization and Function of the First Antibiotic Isolated from a Vent Organism: The Extremophile Metazoan Alvinella pompejana

Aurélie Tasiemski; Sascha Jung; Céline Boidin-Wichlacz; Didier Jollivet; Virginie Cuvillier-Hot; Florence Pradillon; Costantino Vetriani; Oliver Hecht; Frank D. Sönnichsen; Christoph Gelhaus; Chien-Wen Hung; Andreas Tholey; Matthias Leippe; Joachim Grötzinger; Françoise Gaill

The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worms epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.


Journal of Biological Chemistry | 2012

Macin Family of Antimicrobial Proteins Combines Antimicrobial and Nerve Repair Activities

Sascha Jung; Frank D. Sönnichsen; Chien-Wen Hung; Andreas Tholey; Céline Boidin-Wichlacz; Wiebke Haeusgen; Christoph Gelhaus; Christine Desel; Rainer Podschun; Vicki Waetzig; Aurélie Tasiemski; Matthias Leippe; Joachim Grötzinger

Background: Antimicrobial macin proteins aggregate bacteria and exert nerve repair activities. Results: Structures of theromacin and neuromacin were elucidated. Nerve repair activities and antimicrobial activities of macins were investigated. Conclusion: Theromacin induces the nerve repair capacity of leech plasma. Macins seem to be proliferation factors. Significance: The extended magnitude of macin activities demands reconsidering their potential biological impact on nerve repair/neurons in their hosts. The tertiary structures of theromacin and neuromacin confirmed the macin protein family as a self-contained family of antimicrobial proteins within the superfamily of scorpion toxin-like proteins. The macins, which also comprise hydramacin-1, are antimicrobially active against Gram-positive and Gram-negative bacteria. Despite high sequence identity, the three proteins showed distinct differences with respect to their biological activity. Neuromacin exhibited a significantly stronger capacity to permeabilize the cytoplasmic membrane of Bacillus megaterium than theromacin and hydramacin-1. Accordingly, it is the only macin that displays pore-forming activity and that was potently active against Staphylococcus aureus. Moreover, neuromacin and hydramacin-1 led to an aggregation of bacterial cells that was not observed with theromacin. Analysis of the molecular surface properties of macins allowed confirmation of the barnacle model as the mechanistic model for the aggregation effect. Besides being antimicrobially active, neuromacin and theromacin, in contrast to hydramacin-1, were able to enhance the repair of leech nerves ex vivo. Notably, all three macins enhanced the viability of murine neuroblastoma cells, extending their functional characteristics. As neuromacin appears to be both a functional and structural chimera of hydramacin-1 and theromacin, the putative structural correlate responsible for the nerve repair capacity in leech was located to a cluster of six amino acid residues using the sequence similarity of surface-exposed regions.


PLOS Biology | 2017

PROTEOLYTIC ORIGIN OF THE SOLUBLE HUMAN IL-6R IN VIVO AND A DECISIVE ROLE OF N-GLYCOSYLATION

Steffen Riethmueller; Prasath Somasundaram; Johanna C. Ehlers; Chien-Wen Hung; Charlotte M. Flynn; Juliane Lokau; Maria Agthe; Stefan Düsterhöft; Yijue Zhu; Joachim Grötzinger; Inken Lorenzen; Tomas Koudelka; Kosuke Yamamoto; Ute Pickhinke; Rielana Wichert; Christoph Becker-Pauly; Marisa Rädisch; Alexander Albrecht; Markus Hessefort; Dominik Stahnke; Carlo Unverzagt; Stefan Rose-John; Andreas Tholey; Christoph Garbers

Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography–mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.


Analytical Chemistry | 2013

Nano-High-Performance Liquid Chromatography with Online Precleaning Coupled to Inductively Coupled Plasma Mass Spectrometry for the Analysis of Lanthanide-Labeled Peptides in Tryptic Protein Digests

Angela Holste; Andreas Tholey; Chien-Wen Hung; Dirk Schaumlöffel

Low background signals are an indispensable prerequisite for accurate quantification in bioanalytics. This poses a special challenge when using derivatized samples, where excess reagent concentrations are increasing the background signal. Precleaning steps often are time-consuming and usually lead to analyte losses. In this study, a set of labeled model peptides and a protein digest was analyzed using inductively coupled plasma mass spectrometry (ICPMS), coupled to nano ion pairing reversed-phase high-performance liquid chromatography (nano-IP-RP-HPLC). In addition, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) was used for peptide identification. Peptides were labeled with lanthanide metals using bifunctional DOTA-based (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) reagents. The resulting metal excess was removed online during nano-HPLC, by trapping the labeled peptides on a C18-precolumn and washing them prior to their elution to the analytical column. Different ion pairing reagents like TFA (trifluoroacetic acid) and HFBA (heptafluorobutyric acid) were used in the study to enhance interactions of the different peptide species with the C18 material of the precolumn. HFBA even allowed the detection of a highly hydrophilic peptide that was not retained using TFA. It was shown that for the mixture of labeled model peptides, even a short 3 min washing step already enhanced the removal of the excess reagents significantly, whereas peptide losses were observable starting with a 10 min washing time. A 6 min washing time was determined to be the best parameter for lowering the lanthanide metal background while maintaining maximum peptide recovery. Alternative precleaning setups using EDTA to enhance the removal of free metal or an offline approach using solid phase extraction did not show promising results. The application of the optimized method to labeled peptides in a lysozyme digest showed results comparable to those obtained with model peptides.


Nature Chemical Biology | 2013

Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba.

Matthias Michalek; Frank D. Sönnichsen; Rainer Wechselberger; Andrew J. Dingley; Chien-Wen Hung; Annika Kopp; Hans Wienk; Maren Simanski; Rosa Herbst; Inken Lorenzen; Francine Marciano-Cabral; Christoph Gelhaus; Thomas Gutsmann; Andreas Tholey; Joachim Grötzinger; Matthias Leippe

Human pathogens often produce soluble protein toxins that generate pores inside membranes, resulting in the death of target cells and tissue damage. In pathogenic amoebae, this has been exemplified with amoebapores of the enteric protozoan parasite Entamoeba histolytica. Here we characterize acanthaporin, to our knowledge the first pore-forming toxin to be described from acanthamoebae, which are free-living, bacteria-feeding, unicellular organisms that are opportunistic pathogens of increasing importance and cause severe and often fatal diseases. We isolated acanthaporin from extracts of virulent Acanthamoeba culbertsoni by tracking its pore-forming activity, molecularly cloned the gene of its precursor and recombinantly expressed the mature protein in bacteria. Acanthaporin was cytotoxic for human neuronal cells and exerted antimicrobial activity against a variety of bacterial strains by permeabilizing their membranes. The tertiary structures of acanthaporins active monomeric form and inactive dimeric form, both solved by NMR spectroscopy, revealed a currently unknown protein fold and a pH-dependent trigger mechanism of activation.


Journal of Proteomics | 2014

Determination of disulfide linkages in antimicrobial peptides of the macin family by combination of top-down and bottom-up proteomics.

Chien-Wen Hung; Sascha Jung; Joachim Grötzinger; Christoph Gelhaus; Matthias Leippe; Andreas Tholey

UNLABELLED Macins are a distinct class of antimicrobial peptides (AMPs) produced by leeches and Hydra. Their function depends strongly on their three-dimensional structure. In order to support structural elucidation of these AMPs, the knowledge and proper assignment of disulfide bonds formed in these cysteine-rich peptides is a prerequisite. In this report, we outline an analytical strategy, encompassing a combination of top-down MS based analytics and sequence-dependent enzyme cleavage under native conditions followed by high mass accuracy and high resolution MS/MS analysis by LTQ-Orbitrap MS to assign disulfide linkages of three members of the macin family, namely neuromacin, theromacin, and hydramacin-1. The results revealed that the eight cysteine residues conserved in all three macins form the same four disulfide bonds, i.e. [C1:C6], [C2:C5], [C3:C7], and [C4:C8]. Theromacin, which possess two additional cysteine residues, forms a fifth disulfide bond. BIOLOGICAL SIGNIFICANCE Beside the high biological significance which is based on the inherent dependence of biological activity on the structural features of antimicrobial peptides (which holds true for entirely every protein), the presented analytical strategy will be of wide interest, as it widens the available toolbox for the analysis of this important posttranslational modification.


Journal of Proteome Research | 2013

Optimized fragmentation conditions for iTRAQ-labeled phosphopeptides.

Dennis Linke; Chien-Wen Hung; Liam Cassidy; Andreas Tholey

Protein phosphorylation is an important post-translational modification that plays a regulatory role within numerous biological processes. The simultaneous identification, localization, and quantification of phosphorylated proteins is vital for understanding this dynamic control mechanism. The application of isobaric labeling strategies, for example, iTRAQ, for quantitative phosphopeptide analysis requires simultaneous monitoring of peptide backbone fragmentation, loss of phosphoryl moieties, and the cleavage of isobaric labeling reporter ions. In the present study, we have examined MS/MS fragmentation modes available in the Orbitrap Velos MS (collision induced dissociation (CID), CID plus multistage activation, and higher energy collision dissociation (HCD)), for their ability to generate ions required for simultaneous quantification and identification of iTRAQ labeled phosphopeptides in a semicomplex (12) and a complex (131) phosphopeptide mix. The required normalized collision energies for quantification and identification of iTRAQ-labeled phosphopeptides require a compromise between the optimal parameters for each aspect. Here, we were able to determine an optimized MS/MS measurement protocol that involves CID measurement in ion trap for identification followed by HCD measurement for parallel identification and quantification that satisfies the time requirements for LC-MS/MS experiments.


Molecular & Cellular Proteomics | 2016

Comparative Proteome Analysis in Schizosaccharomyces pombe Identifies Metabolic Targets to Improve Protein Production and Secretion

Chien-Wen Hung; Tobias Klein; Liam Cassidy; Dennis Linke; Sabrina Lange; Uwe Anders; Matthias Bureik; Elmar Heinzle; Konstantin Schneider; Andreas Tholey

Protein secretion in yeast is a complex process and its efficiency depends on a variety of parameters. We performed a comparative proteome analysis of a set of Schizosaccharomyces pombe strains producing the α-glucosidase maltase in increasing amounts to investigate the overall proteomic response of the cell to the burden of protein production along the various steps of protein production and secretion. Proteome analysis of these strains, utilizing an isobaric labeling/two dimensional LC-MALDI MS approach, revealed complex changes, from chaperones and secretory transport machinery to proteins controlling transcription and translation. We also found an unexpectedly high amount of changes in enzyme levels of the central carbon metabolism and a significant up-regulation of several amino acid biosyntheses. These amino acids were partially underrepresented in the cellular protein compared with the composition of the model protein. Additional feeding of these amino acids resulted in a 1.5-fold increase in protein secretion. Membrane fluidity was identified as a second bottleneck for high-level protein secretion and addition of fluconazole to the culture caused a significant decrease in ergosterol levels, whereas protein secretion could be further increased by a factor of 2.1. In summary, we show that high level protein secretion causes global changes of protein expression levels in the cell and that precursor availability and membrane composition limit protein secretion in this yeast. In this respect, comparative proteome analysis is a powerful tool to identify targets for an efficient increase of protein production and secretion in S. pombe. Data are available via ProteomeXchange with identifiers PXD002693 and PXD003016.

Collaboration


Dive into the Chien-Wen Hung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge