Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chih-Chang Wei is active.

Publication


Featured researches published by Chih-Chang Wei.


Journal of Clinical Investigation | 1997

Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces.

Louis J. Dell'Italia; Qing C. Meng; E. Balcells; Chih-Chang Wei; R. W. Palmer; Gilbert R. Hageman; Joan Durand; Gerald H. Hankes; Suzanne Oparil

Angiotensin-converting enzyme inhibitors have beneficial effects that are presumably mediated by decreased angiotensin II (ANG II) production. In this study, we measure for the first time ANG I and ANG II levels in the interstitial fluid (ISF) space of the heart. ISF and aortic plasma ANG I and II levels were obtained at baseline, during intravenous infusion of ANG I (5 microM, 0.1 ml/min, 60 min), and during ANG I + the angiotensin-converting enzyme inhibitor captopril (cap) (2.5 mM, 0.1 ml/min, 60 min) in six anesthetized open-chested dogs. ISF samples were obtained using microdialysis probes inserted into the left ventricular myocardium (3-4 probes/dog). ANG I increased mean arterial pressure from 102+/-3 (SEM) to 124+/-3 mmHg (P < 0.01); addition of cap decreased MAP to 95+/-3 mmHg (P < 0.01). ANG I infusion increased aortic plasma ANG I and ANG II (pg/ml) (ANG I = 101+/-129 to 370+/-158 pg/ml, P < 0.01; and ANG II = 22+/-40 to 466+/-49, P < 0.01); addition of cap further increased ANG I (1,790+/-158, P < 0.01) and decreased ANG II (33+/-49, P < 0.01). ISF ANG I and ANG II levels (pg/ml) were > 100-fold higher than plasma levels, and did not change from baseline (8,122+/-528 and 6,333+/-677), during ANG I (8,269+/-502 and 6, 139+/-695) or ANG I + cap (8,753+/-502 and 5,884+/-695). The finding of very high ANG I and ANG II levels in the ISF vs. intravascular space that are not affected by IV ANG I or cap suggests that ANG II production and/or degradation in the heart is compartmentalized and mediated by different enzymatic mechanisms in the interstitial and intravascular spaces.


Journal of Molecular and Cellular Cardiology | 2003

Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog

James A. Stewart; Chih-Chang Wei; Gregory L. Brower; Patricia Rynders; Gerald H. Hankes; A. Ray Dillon; Pamela A. Lucchesi; Joseph S. Janicki; Louis J. Dell'Italia

The present study tested the hypothesis that cardiac mast cells and chymase are associated with matrix metalloproteinase (MMP) activation and extracellular matrix (ECM) degradation in the evolution of left ventricular (LV) chamber remodeling secondary to experimental mitral regurgitation (MR) in dogs. LV mast cell density, chymase activity, and angiotensin II (ANG II) levels were significantly increased 2 and 4 weeks post-MR, while an increase in angiotensin-converting enzyme (ACE) activity was not seen prior to the chronic 24 week stage. As early as 2 and 4 weeks, there was a significant decrease in interstitial myocardial collagen content that was associated with an increase in LV end-diastolic diameter (LVEDD) but a normal LVEDD/wall thickness ratio. While mast cell density decreased to normal at 24 weeks, both chymase and MMP-2 activity remained increased throughout the entire 24-week period post-MR. By 24 weeks a transition to an adverse pattern of LV remodeling characterized by a 2-fold increase in the LVEDD/wall thickness ratio had occurred. Thus, this study supports the hypothesis that mast cells and chymase are important modulators of MMP activity and ECM degradation, contributing to adverse LV remodeling in chronic volume overload secondary to MR.


Journal of Clinical Investigation | 2010

Mast cell chymase limits the cardiac efficacy of Ang I–converting enzyme inhibitor therapy in rodents

Chih-Chang Wei; Naoki Hase; Yukiko Inoue; Eddie W. Bradley; Eiji Yahiro; Ming Li; Nawazish Naqvi; Pamela C. Powell; Ke Shi; Yoshimasa Takahashi; Keijiro Saku; Hidenori Urata; Louis J. Dell'Italia; Ahsan Husain

Ang I-converting enzyme (ACE) inhibitors are widely believed to suppress the deleterious cardiac effects of Ang II by inhibiting locally generated Ang II. However, the recent demonstration that chymase, an Ang II-forming enzyme stored in mast cell granules, is present in the heart has added uncertainty to this view. As discussed here, using microdialysis probes tethered to the heart of conscious mice, we have shown that chronic ACE inhibitor treatment did not suppress Ang II levels in the LV interstitial fluid (ISF) despite marked inhibition of ACE. However, chronic ACE inhibition caused a marked bradykinin/B2 receptor-mediated increase in LV ISF chymase activity that was not observed in mast cell-deficient KitW/KitW-v mice. In chronic ACE inhibitor-treated mast cell-sufficient littermates, chymase inhibition decreased LV ISF Ang II levels substantially, indicating the importance of mast cell chymase in regulating cardiac Ang II levels. Chymase-dependent processing of other regulatory peptides also promotes inflammation and tissue remodeling. We found that combined chymase and ACE inhibition, relative to ACE inhibition alone, improved LV function, decreased adverse cardiac remodeling, and improved survival after myocardial infarction in hamsters. These results suggest that chymase inhibitors could be a useful addition to ACE inhibitor therapy in the treatment of heart failure.


Journal of the American College of Cardiology | 2002

Angiotensin II receptor blockade does not improve left ventricular function andremodeling in subacute mitral regurgitation in the dog

Gilbert J. Perry; Chih-Chang Wei; Gerald H. Hankes; S.Ray Dillon; Patricia Rynders; Rupak Mukherjee; Francis G. Spinale; Louis J. Dell’Italia

OBJECTIVES We hypothesized that angiotensin II type-1 (AT(1)) receptor blocker (AT(1)RB) would prevent adverse left ventricular (LV) remodeling and LV dysfunction when started at the outset of mitral regurgitation (MR). BACKGROUND Little is known regarding the efficacy of AT(1)RB treatment of MR. METHODS Mitral regurgitation was induced by chordal disruption in adult mongrel dogs. Six normal dogs (NLs) were compared to six untreated MR dogs (MR) and seven dogs treated with the receptor blocker irbesartan (MR+AT(1)RB) started 24 h after induction of MR (60 mg/kg p.o. b.i.d.) and continued for three months. RESULTS Treatment with AT(1)RB decreased systemic vascular resistance but did not significantly improve cardiac output, LV end-diastolic dimension (LVEDD) or LVEDD/wall thickness compared to untreated MR dogs. Resting isolated cardiomyocyte length increased in MR versus NLs and was further increased in AT(1)RB dogs. Left ventricular end-systolic dimension increased to a greater extent from baseline in AT(1)RB dogs versus untreated MR dogs (29 +/- 9% vs. 12 +/- 6%, p < 0.05), despite a significantly lower LV peak systolic pressure in AT(1)RB dogs. Plasma-angiotensin (ANG) II was elevated greater than threefold in both MR and MR+AT(1)RB versus NLs. In contrast, intracardiac ANG II was increased greater than twofold in MR dogs versus NLs, but was normalized by AT(1)RB. CONCLUSIONS The use of AT(1)RB decreased systemic vascular resistance and attenuated local expression of the renin-angiotensin system but did not prevent adverse LV chamber and cardiomyocyte remodeling. These results suggest that blockade of the AT(1) receptor does not improve LV remodeling and function in the early myocardial adaptive phase of MR.


Circulation | 1999

Evidence for Angiotensin-Converting Enzyme– and Chymase-Mediated Angiotensin II Formation in the Interstitial Fluid Space of the Dog Heart In Vivo

Chih-Chang Wei; Qing C. Meng; Ronald Palmer; Gilbert R. Hageman; Joan Durand; Wayne E. Bradley; Diane M. Farrell; Gerald H. Hankes; Suzanne Oparil; Louis J. Dell’Italia

BACKGROUND We have previously demonstrated that angiotensin II (Ang II) levels in the interstitial fluid (ISF) space of the heart are higher than in the blood plasma and do not change after systemic infusion of Ang I. In this study, we assess the enzymatic mechanisms (chymase versus ACE) by which Ang II is generated in the ISF space of the dog heart in vivo. METHODS AND RESULTS Cardiac microdialysis probes were implanted in the left ventricular (LV) myocardium (3 to 4 probes per dog) of 12 anesthetized open-chest normal dogs. ISF Ang I and II levels were measured at baseline and during ISF infusion of Ang I (15 micromol/L, n=12), Ang I+the ACE inhibitor captopril (cap) (2.5 mmol/L, n=4), Ang I+the chymase inhibitor chymostatin (chy) (1 mmol/L, n=4), and Ang I+cap+chy (n=4). ISF infusion of Ang I increased ISF Ang II levels 100-fold (P<0.01), whereas aortic and coronary sinus plasma Ang I and II levels were unaffected and were 100-fold lower than ISF levels. Compared with ISF infusion of Ang I alone, Ang I+cap (n=4) produced a greater reduction in ISF Ang II levels than did Ang I+chy (n=4) (71% versus 43%, P<0.01), whereas Ang I+cap+chy produced a 100% decrease in ISF Ang II levels. CONCLUSIONS This study demonstrates for the first time a very high capacity for conversion of Ang I to Ang II mediated by both ACE and chymase in the ISF space of the dog heart in vivo.


Circulation | 2004

Short-Acting β-Adrenergic Antagonist Esmolol Given at Reperfusion Improves Survival After Prolonged Ventricular Fibrillation

Cheryl R. Killingsworth; Chih-Chang Wei; Louis J. Dell’Italia; Jeffrey L. Ardell; Melody A. Kingsley; William M. Smith; Raymond E. Ideker; Gregory P. Walcott

Background—High catecholamine concentrations are cytotoxic to cardiac myocytes. We hypothesized that myocardial interstitial catecholamine levels are greatly elevated immediately after long-duration ventricular fibrillation (VF), defibrillation, and reperfusion and that the short-acting β-antagonist esmolol administered at reperfusion would protect against this catecholamine surge and improve survival. Methods and Results—In part 1 of this study, catecholamines from myocardial interstitial fluid (ISF) and aortic and coronary sinus plasma were quantified by use of 3H-labeled radioenzymatic assay in 8 open-chest, anesthetized pigs. Eight minutes of electrically induced VF was followed by internal defibrillation and reperfusion. By 4 minutes of VF, ISF norepinephrine increased significantly, from 1.3± 0.3 to 7.4± 2.4 ng/mL. Epinephrine increased significantly, from 0.4± 0.2 to 1.5± 0.7 ng/mL. ISF norepinephrine and epinephrine peaked at 219.2± 92.1 and 63.7± 25.1 ng/mL after defibrillation and reperfusion and decreased significantly to 12.2± 3.5 and 6.7± 3.1 ng/mL 23 minutes after defibrillation. Transcardiac catecholamine changes were similar. In part 2, 8 minutes of VF was followed by external defibrillation in anesthetized, closed-chest pigs. Animals received 1.0 mg/kg esmolol (n= 8) or saline (n= 8) intravenously at the start of cardiopulmonary resuscitation (CPR). Advanced cardiac life support, including CPR and epinephrine, was delivered to both groups. Esmolol before reperfusion improved return of spontaneous circulation and 4-hour survival (7/8 versus 3/8 survivors, χ2P < 0.05). Conclusions—Transcardiac and ISF norepinephrine and epinephrine levels are briefly massively elevated after 8 minutes of VF, defibrillation, and reperfusion. A short-acting β-antagonist administered immediately after defibrillation improves return of spontaneous circulation and 4-hour survival after this prolonged VF.


Circulation | 2003

β1-Adrenergic Receptor Blockade Attenuates Angiotensin II–Mediated Catecholamine Release Into the Cardiac Interstitium in Mitral Regurgitation

Jose A. Tallaj; Chih-Chang Wei; Gerald H. Hankes; Merrilee Holland; Patricia Rynders; A. Ray Dillon; Jeffrey L. Ardell; J. Andrew Armour; Pamela A. Lucchesi; Louis J. Dell’Italia

Background—This study tested the hypothesis that &bgr;1-adrenoreceptor blockade modulates the angiotensin II (Ang II)–evoked neural release of norepinephrine (NE) and epinephrine (Epi) into the cardiac interstitial fluid (ISF) space in experimentally induced mitral regurgitation (MR) in the dog. Methods and Results—Normal dogs (n=8) were compared with dogs with MR of 2 (n=8) and 4 (n=6) weeks’ duration and with dogs with MR treated with &bgr;1-receptor blockade (RB; extended-release metoprolol succinate, 100 mg QD; MR+&bgr;1-RB) that was started 24 hours after MR induction for 2 (n=6) and 4 weeks (n=8). Left ventricular end-diastolic dimension increased 20% as plasma Ang II levels increased >5-fold in both MR and MR+&bgr;1-RB dogs at 2 and 4 weeks. Ang II infusion into the left atrium produced increases in ISF NE and Epi in normal dogs, which were further increased in 2- and 4-week MR dogs but were restored to normal in 4-week MR+&bgr;1-RB dogs. Ang II infusion produced 4-fold increases in circulating NE and Epi in 2- and 4-week MR dogs that returned to normal in 4-week+&bgr;1-RB dogs. Left ventricular angiotensin-converting enzyme activity and ISF Ang II were increased in 4-week MR dogs but were decreased in 4-week MR+&bgr;1-RB dogs. Conclusions—&bgr;1-RB decreases renin-angiotensin system sympathostimulation and activation by attenuating the Ang II–mediated NE and Epi release into the cardiac ISF and circulation and by decreasing left ventricular angiotensin-converting enzyme expression in the early phases of volume overload.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload

Yuanwen Chen; Betty Pat; James D. Gladden; Junying Zheng; Pamela C. Powell; Chih-Chang Wei; Xiangqin Cui; Ahsan Husain; Louis J. Dell'Italia

Left ventricular (LV) volume overload (VO) causes eccentric remodeling with inflammatory cell infiltration and extracellular matrix (ECM) degradation, for which there is currently no proven therapy. To uncover new pathways that connect inflammation and ECM homeostasis with cellular dysfunction, we determined the cardiac transciptome in subacute, compensated, and decompensated stages based on in vivo hemodynamics and echocardiography in the rat with aortocaval fistula (ACF). LV dilatation at 5 wk was associated with a normal LV end-diastolic dimension-to-posterior wall thickness ratio (LVEDD/PWT; compensated), whereas the early 2-wk (subacute) and late 15-wk (decompensated) ACF groups had significant increases in LVEDD/PWT. Subacute and decompensated stages had a significant upregulation of genes related to inflammation, the ECM, the cell cycle, and apoptosis. These changes were accompanied by neutrophil and macrophage infiltration, nonmyocyte apoptosis, and interstitial collagen loss. At 15 wk, there was a 40-fold increase in the matricellular protein periostin, which inhibits connections between collagen and cells, thereby potentially mediating a side-to-side slippage of cardiomyocytes and LV dilatation. The majority of downregulated genes was composed of mitochondrial enzymes whose suppression progressed from 5 to 15 wk concomitant with LV dilatation and systolic heart failure. The profound decrease in gene expression related to fatty acid, amino acid, and glucose metabolism was associated with the downregulation of peroxisome proliferator associated receptor (PPAR)-α-related and bioenergetic-related genes at 15 wk. In VO, an early phase of inflammation subsides at 5 wk but reappears at 15 wk with marked periostin production along with the suppression of genes related to PPAR-α and energy metabolism.


Circulation | 2010

Chymase Inhibition Prevents Fibronectin and Myofibrillar Loss and Improves Cardiomyocyte Function and LV Torsion Angle in Dogs With Isolated Mitral Regurgitation

Betty Pat; Yuanwen Chen; Cheryl R. Killingsworth; James D. Gladden; Ke Shi; Junying Zheng; Pamela C. Powell; Greg Walcott; Mustafa I. Ahmed; Himanshu Gupta; Ravi V. Desai; Chih-Chang Wei; Naoki Hase; Tsunefumi Kobayashi; Abdelkarim Sabri; Henk Granzier; Thomas S. Denney; Michael Tillson; A. Ray Dillon; Ahsan Husain; Louis J. Dell'Italia

Background— The left ventricular (LV) dilatation of isolated mitral regurgitation (MR) is associated with an increase in chymase and a decrease in interstitial collagen and extracellular matrix. In addition to profibrotic effects, chymase has significant antifibrotic actions because it activates matrix metalloproteinases and kallikrein and degrades fibronectin. Thus, we hypothesize that chymase inhibitor (CI) will attenuate extracellular matrix loss and LV remodeling in MR. Methods and Results— We studied dogs with 4 months of untreated MR (MR; n=9) or MR treated with CI (MR+CI; n=8). Cine MRI demonstrated a >40% increase in LV end-diastolic volume in both groups, consistent with a failure of CI to improve a 25% decrease in interstitial collagen in MR. However, LV cardiomyocyte fractional shortening was decreased in MR versus normal dogs (3.71±0.24% versus 4.81±0.31%; P<0.05) and normalized in MR+CI dogs (4.85±0.44%). MRI with tissue tagging demonstrated an increase in LV torsion angle in MR+CI versus MR dogs. CI normalized the significant decrease in fibronectin and FAK phosphorylation and prevented cardiomyocyte myofibrillar degeneration in MR dogs. In addition, total titin and its stiffer isoform were increased in the LV epicardium and paralleled the changes in fibronectin and FAK phosphorylation in MR+CI dogs. Conclusions— These results suggest that chymase disrupts cell surface–fibronectin connections and FAK phosphorylation that can adversely affect cardiomyocyte myofibrillar structure and function. The greater effect of CI on epicardial versus endocardial titin and noncollagen cell surface proteins may be responsible for the increase in torsion angle in chronic MR.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

Masaaki Koide; Blase A. Carabello; Chester C. Conrad; John M. Buckley; Gilberto DeFreyte; Mary A. Barnes; Robert J. Tomanek; Chih-Chang Wei; Louis J. Dell’Italia; George Cooper; Michael R. Zile

Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 ± 3 mmHg in normals to 68 ± 4 mmHg in PAB, 65 ± 5 mmHg in PAB plus losartan and 62 ± 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 ± 0.04 g/kg in normals to 1.11 ± 0.06 g/kg in PAB, 1.06 ± 0.06 g/kg in PAB plus losartan and 1.06 ± 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the hypertrophic response; and 3) load, independent of the RAS, is capable of stimulating cardiac growth.

Collaboration


Dive into the Chih-Chang Wei's collaboration.

Top Co-Authors

Avatar

Louis J. Dell'Italia

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Louis J. Dell’Italia

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Pamela C. Powell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Wayne E. Bradley

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Gerald H. Hankes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Junying Zheng

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Oparil

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheryl R. Killingsworth

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge