Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chih Ping Mao is active.

Publication


Featured researches published by Chih Ping Mao.


Journal of Clinical Investigation | 2012

Nanog signaling in cancer promotes stem-like phenotype and immune evasion

Kyung Hee Noh; Bo Wook Kim; Kwon Ho Song; Hanbyoul Cho; Young Ho Lee; Jin Hee Kim; Joon-Yong Chung; Jae Hoon Kim; Stephen M. Hewitt; Seung Yong Seong; Chih Ping Mao; T. C. Wu; Tae Woo Kim

Adaptation of tumor cells to the host is a major cause of cancer progression, failure of therapy, and ultimately death. Immune selection drives this adaptation in human cancer by enriching tumor cells with a cancer stem cell-like (CSC-like) phenotype that makes them resistant to CTL-mediated apoptosis; however, the mechanisms that mediate CSC maintenance and proliferation are largely unknown. Here, we report that CTL-mediated immune selection drives the evolution of tumor cells toward a CSC-like phenotype and that the CSC-like phenotype arises through the Akt signaling pathway via transcriptional induction of Tcl1a by Nanog. Furthermore, we found that hyperactivation of the Nanog/Tcl1a/Akt signaling axis was conserved across multiple types of human cancer. Inhibition of Nanog in a murine model of colon cancer rendered tumor cells susceptible to immune-mediated clearance and led to successful, long-term control of the disease. Our findings establish a firm link among immune selection, disease progression, and the development of a stem-like tumor phenotype in human cancer and implicate the Nanog/Tcl1a/Akt pathway as a central molecular target in this process.


Human Gene Therapy | 2008

Treatment with LL-37 Peptide Enhances Antitumor Effects Induced by CpG Oligodeoxynucleotides Against Ovarian Cancer

Chi Mu Chuang; Archana Monie; Annie Wu; Chih Ping Mao; Chien Fu Hung

There is an urgent need for innovative therapies against ovarian cancer, one of the leading causes of death from gynecological cancers in the United States. Immunotherapy employing Toll-like receptor (TLR) ligands, such as CpG oligodeoxynucleotides (CpG-ODN), may serve as a potentially promising approach in the control of ovarian tumors. The CpG-ODN requires intracellular delivery into the endosomal compartment, where it can bind to TLR9 in order to activate the immune system. In the current study, we aim to investigate whether the antimicrobial polypeptide from the cathelicidin family, LL-37, could enhance the immunostimulatory effects of CpG-ODN by increasing the uptake of CpG-ODN into the immune cells, thus enhancing the antitumor effects against ovarian cancer. We found that treatment with the combination of CpG-ODN and LL-37 generated significantly better therapeutic antitumor effects and enhanced survival in murine ovarian tumor-bearing mice compared with treatment with CpG-ODN or LL-37 alone. We also observed that treatment with the combination of CpG-ODN and LL-37 enhanced proliferation and activation of natural killer (NK) cells, but not CD4(+) or CD8(+) T cells, in the peritoneal cavity. Furthermore, in vivo antibody depletion experiments indicated that peritoneal NK cells played a critical role in the observed antitumor effects. Thus, our data suggest that the combination of CpG-ODN with LL-37 peptide may lead to the control of ovarian tumors through the activation of innate immunity.


Cancer Research | 2013

Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity

Tae Heung Kang; Chih Ping Mao; Sung Yong Lee; Alexander Chen; Ji Hyun Lee; Tae Woo Kim; Ronald D. Alvarez; Richard Roden; Drew M. Pardoll; Chien Fu Hung; T. C. Wu

Multiple classes of pharmacologic agents have the potential to induce the expression and release of proinflammatory factors from dying tumor cells. As a result, these cells can in theory elicit an immune response through various defined mechanisms to permanently eradicate disseminated cancer. However, the impact of chemotherapy on the tumor-specific immune response in the context of the tumor microenvironment is largely unknown. Within the tumor microenvironment, the immune response promoted by chemotherapy is antagonized by an immune-suppressive milieu, and the balance of these opposing forces dictates the clinical course of disease. Here, we report that high antigen exposure within the tumor microenvironment following chemotherapy is sufficient to skew this balance in favor of a productive immune response. In elevating antigen exposure, chemotherapy can achieve long-term control of tumor progression without the need of an additional adjuvant. We found that chemotherapy initiated this phenomenon in the tumor microenvironment through an accumulation of dendritic cells, which stimulated CD8(+) T cells and the type I IFN pathway. From this conceptual base, we developed a simple approach to cancer therapy combining chemotherapy and vaccination that may be widely applicable.


Cancer Research | 2012

Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immune-resistant and stem-like phenotype.

Kyung Hee Noh; Young Ho Lee; Ju-Hong Jeon; Tae Heung Kang; Chih Ping Mao; T. C. Wu; Tae Woo Kim

Due to the exquisite specificity and potency of the immune system, vaccination is in theory the most precise and powerful approach for controlling cancer. However, current data from clinical trials indicate that vaccination rarely yields significant benefits for cancer patients in terms of tumor progression and long-term survival. The poor clinical outcomes of vaccination are primarily caused by mechanisms of immune tolerance, especially within the tumor microenvironment. Here, we report that vaccination drives the evolution of tumor cells toward an immune-resistant and stem-like phenotype that promotes tumor growth and nullifies the CTL response. The emergence of this phenotype required the transcription factor Nanog, which is induced as a consequence of immune selection. Nanog expression enhanced the stem-like features of tumor cells and protected them from killing by tumor-reactive CTLs. Delivery of siNanog into tumor-bearing mice rendered the tumor vulnerable to immune surveillance and strongly suppressed its growth. Together, our findings show tumor adaptation to vaccination through gain of an immune-resistant, stem-like phenotype and identify Nanog as a central molecular target in this process. Future vaccination technology should consider Nanog an important target to enhance the immunotherapeutic response.


Human Gene Therapy | 2008

RNA Interference-Mediated In Vivo Silencing of Fas Ligand as a Strategy for the Enhancement of DNA Vaccine Potency

Bruce Huang; Chih Ping Mao; Shiwen Peng; Chien Fu Hung; T. C. Wu

Intradermal administration of DNA vaccines encoding luciferase represents a convenient method to assess gene expression in vivo. Gene silencing by intradermal gene gun administration of DNA encoding short hairpin RNA (shRNA) may represent an effective technique for the specific knockdown of gene expression in vivo. In the current study, we characterized luciferase gene expression over time in vivo by noninvasive bioluminescence imaging. Furthermore, we characterized in vivo luciferase gene silencing with DNA encoding shRNA targeting luciferase. We also characterized human papillomavirus type 16 (HPV-16) E7-specific CD8(+) T cell immune responses in mice immunized with E7 DNA and DNA encoding shRNA targeting Fas ligand (FasL), a key proapoptotic signaling protein. Our results indicated that coadministration of DNA encoding shRNA targeting luciferase significantly reduced luciferase expression in mice intradermally administered luciferase DNA. Furthermore, we observed that mice vaccinated with E7-expressing DNA coadministered with DNA encoding shRNA targeting FasL generated significantly enhanced E7-specific CD8(+) cytotoxic T cell responses as well as potent therapeutic antitumor effects against E7-expressing tumors. Thus, intradermal administration of DNA encoding shRNA represents a plausible approach to silence genes in vivo and a potentially useful tool to enhance DNA vaccine potency.


Clinical Cancer Research | 2015

Gain of HIF-1α under Normoxia in Cancer Mediates Immune Adaptation through the AKT/ERK and VEGFA Axes

Young Ho Lee; Hyun Cheol Bae; Kyung Hee Noh; Kwon Ho Song; Sang Kyu Ye; Chih Ping Mao; Kyung Mi Lee; T. C. Wu; Tae Woo Kim

Purpose: Adaptation to host immune surveillance is now recognized as a hallmark of cancer onset and progression, and represents an early, indispensable event in cancer evolution. This process of evolution is first instigated by an immune selection pressure imposed by natural host surveillance mechanisms and may then be propagated by vaccination or other types of immunotherapy. Experimental Design: We developed a system to simulate cancer evolution in a live host and to dissect the mechanisms responsible for adaptation to immune selection. Here, we show that the oxygen-sensitive α subunit of hypoxia-inducible factor 1 (HIF-1α) plays a central role in cancer immune adaptation under conditions of normal oxygen tension. Results: We found that tumor cells gain HIF-1α in the course of immune selection under normoxia and that HIF-1α renders tumor cells resistant to lysis by tumor-specific cytotoxic T lymphocytes (CTL) in culture and in mice. The effects of HIF-1α on immune adaptation were mediated through VEGFA-dependent activation of the AKT and ERK signaling pathways, which induced an antiapoptotic gene expression network in tumor cells. Conclusions: Our study therefore establishes a link between immune selection, overexpression of HIF-1α, and cancer immune adaptation under normoxia, providing new opportunities for molecular intervention in patients with cancer. Clin Cancer Res; 21(6); 1438–46. ©2015 AACR.


PLOS ONE | 2012

Tumor-Targeted Delivery of IL-2 by NKG2D Leads to Accumulation of Antigen-Specific CD8+ T Cells in the Tumor Loci and Enhanced Anti-Tumor Effects

Tae Heung Kang; Chih Ping Mao; Liangmei He; Ya Chea Tsai; Katherine Liu; Victor La; T. C. Wu; Chien Fu Hung

Interleukin-2 (IL-2) has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein) or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci.


Immunology | 2007

Immunological research using RNA interference technology

Chih Ping Mao; Yen Yu Lin; Chien Fu Hung; T. C. Wu

RNA interference (RNAi) is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi technology has also recently yielded significant insight into the innate and adaptive immune systems by helping to elucidate numerous mechanisms that regulate the development, activation and function of cells that mediate immunity. In addition, because of its ability to suppress gene expression effectively, this technique may be used to regulate the immune response for clinical purposes. Nonetheless, before RNAi can be successfully administered into human patients as a medical treatment, it is necessary to overcome several major limitations of this technology, such as inefficient in vivo delivery, incomplete silencing of target genes, non‐specific immune responses, and off‐target effects. As novel developments and discoveries in molecular biology swiftly continue to unfold, it is likely that RNAi may soon translate into a potent form of in vivo gene silencing with profound applications to vaccination and immunotherapy. In the present review, we examine the current progress of immunological studies employing RNAi and discuss the prospects for the implementation of this technique in the clinical arena.


Vaccine | 2015

Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation

Sung Jong Lee; Liwen Song; Ming Chieh Yang; Chih Ping Mao; Benjamin Yang; Andrew Yang; Jessica Jeang; Shiwen Peng; T. C. Wu; Chien Fu Hung

Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment.


OncoImmunology | 2014

Immune-mediated tumor evolution: Nanog links the emergence of a stem like cancer cell state and immune evasion

Chih Ping Mao; T. C. Wu; Kwon Ho Song; Tae Woo Kim

Tumor cells undergo molecular evolution under immune pressure. Using a murine metastatic lung cancer model, we recently reported that evolutionary pressure enforced through vaccination incites gain of Nanog, a master transcription factor that mediates both emergence of a stem-like cancer cell state and immune evasion. Thus, therapeutic strategies aiming to blunt NANOGs expression in patient tumors may improve the clinical management of cancer.

Collaboration


Dive into the Chih Ping Mao's collaboration.

Top Co-Authors

Avatar

T. C. Wu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chien Fu Hung

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liangmei He

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shiwen Peng

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya Chea Tsai

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge