Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangmei He is active.

Publication


Featured researches published by Liangmei He.


Journal of Clinical Investigation | 2001

Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen.

Wen-Fang Cheng; Chien Fu Hung; Chee Yin Chai; Keng-Fu Hsu; Liangmei He; Morris Ling; T. C. Wu

Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8(+) T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.


Vaccine | 2003

Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe

Cornelia L. Trimble; Cheng Tao Lin; Chien Fu Hung; Sara I. Pai; Jeremy Juang; Liangmei He; Maura L. Gillison; Drew M. Pardoll; Lee Wu; T. C. Wu

DNA vaccines have emerged as an attractive approach for antigen-specific cancer immunotherapy. We have previously linked Mycobacterium tuberculosis heat shock protein 70 (HSP70) to human papillomavirus type 16 (HPV-16) E7 in the context of a DNA vaccine. Vaccination with DNA encoding E7/HSP70 has generated a dramatic increase of E7-specific CD8+ T cell precursors and a strong antitumor effect against E7-expressing tumor (TC-1) in vaccinated mice. The success of our strategy has led to two phases I/II clinical trial proposals in patients with HPV-16 associated high-grade squamous intraepithelial lesion (HSIL) of the cervix and in patients with advanced HPV-associated head and neck squamous cell carcinoma (HNSCC). To translate our HPV DNA vaccines into the clinical domain, the efficacy of pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine and of various routes of administrations were assessed in mice. Our results indicated that pNGVL4a-Sig/E7(detox)/HSP70 DNA vaccine administered via gene gun generated the highest number of E7-specific CD8+ T cells. In addition, DNA vaccination via gene gun required the least dose to generate similar or slightly better antitumor effects compared to needle intramuscular (i.m.) and biojector administrations. Thus, our data suggest that DNA vaccination via gene gun represents the most potent regimen for DNA administration.


Journal of Clinical Investigation | 2003

Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins

Tae Woo Kim; Chien Fu Hung; Morris Ling; Jeremy Juang; Liangmei He; J. Marie Hardwick; Sharad Kumar; T. C. Wu

Intradermal vaccination by gene gun efficiently delivers DNA vaccines into DCs of the skin, resulting in the activation and priming of antigen-specific T cells in vivo. DCs, however, have a limited life span, hindering their long-term ability to prime antigen-specific T cells. We reason that a strategy that prolongs the survival of DNA-transduced DCs will enhance priming of antigen-specific T cells and DNA vaccine potency. Here we show that codelivery of DNA encoding inhibitors of apoptosis (BCL-xL, BCL-2, XIAP, dominant negative caspase-9, or dominant negative caspase-8) with DNA encoding model antigens prolongs the survival of transduced DCs. More importantly, vaccinated mice exhibited significant enhancement in antigen-specific CD8+ T cell immune responses, resulting in a potent antitumor effect against antigen-expressing tumors. Among these antiapoptotic factors, BCL-xL demonstrated the greatest enhancement in antigen-specific immune responses and antitumor effects. Thus, coadministration of DNA vaccines with DNA encoding antiapoptotic proteins represents an innovative approach to enhance DNA vaccine potency.


Journal of Immunology | 2001

Improving Vaccine Potency Through Intercellular Spreading and Enhanced MHC Class I Presentation of Antigen

Chien Fu Hung; Wen-Fang Cheng; Chee-Yin Chai; Keng-Fu Hsu; Liangmei He; Morris Ling; T. C. Wu

The potency of naked DNA vaccines is limited by their inability to amplify and spread in vivo. VP22, a HSV-1 protein, has demonstrated the remarkable property of intercellular transport and may thus provide a unique approach for enhancing vaccine potency. Therefore, we created a novel fusion of VP22 with a model Ag, human papillomavirus type 16 E7, in a DNA vaccine that generated enhanced spreading and MHC class I presentation of Ag. These properties led to a dramatic increase in the number of E7-specific CD8+ T cell precursors in vaccinated mice (around 50-fold) and converted a less effective DNA vaccine into one with significant potency against E7-expressing tumors. In comparison, nonspreading VP221–267 mutants failed to enhance vaccine potency. Our data indicated that the potency of DNA vaccines may be dramatically improved through intercellular spreading and enhanced MHC class I presentation of Ag.


Human Gene Therapy | 2002

Cancer Immunotherapy Using Sindbis Virus Replicon Particles Encoding a VP22–Antigen Fusion

Wen-Fang Cheng; Chien Fu Hung; Keng-Fu Hsu; Chee Yin Chai; Liangmei He; John M. Polo; Leigh A. Slater; Morris Ling; T. C. Wu

Alphavirus vectors have emerged as a strategy for the development of cancer vaccines and gene therapy applications. The availability of a new packaging cell line (PCL), which is capable of generating alphavirus replicon particles without contamination from replication-competent virus, has advanced the field of vaccine development. This replication-defective vaccine vector has potential advantages over naked nucleic acid vaccines, such as increased efficiency of gene delivery and large-scale production. We have developed a new strategy to enhance nucleic acid vaccine potency by linking VP22, a herpes simplex virus type 1 (HSV-1) tegument protein, to a model antigen. This strategy facilitated the spread of linked E7 antigen to neighboring cells. In this study, we created a recombinant Sindbis virus (SIN)-based replicon particle encoding VP22 linked to a model tumor antigen, human papillomavirus type 16 (HPV-16) E7, using a stable SIN PCL. The linkage of VP22 to E7 in these SIN replicon particles resulted in a significant increase in the number of E7-specific CD8(+) T cell precursors and a strong antitumor effect against E7-expressing tumors in vaccinated C57BL/6 mice relative to wild-type E7 SIN replicon particles. Furthermore, a head-to-head comparison of VP22-E7-containing naked DNA, naked RNA replicons, or RNA replicon particle vaccines indicated that SINrep5-VP22/E7 replicon particles generated the most potent therapeutic antitumor effect. Our results indicated that the VP22 strategy used in the context of SIN replicon particles may facilitate the generation of a highly effective vaccine for widespread immunization.


Journal of Virology | 2004

Generation and Characterization of DNA Vaccines Targeting the Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus

Tae Woo Kim; Jin Hyup Lee; Chien Fu Hung; Shiwen Peng; Richard Roden; Mei Cheng Wang; Raphael P. Viscidi; Ya Chea Tsai; Liangmei He; Pei-Jer Chen; David A K Boyd; T. C. Wu

ABSTRACT Severe acute respiratory syndrome (SARS) is a serious threat to public health and the economy on a global scale. The SARS coronavirus (SARS-CoV) has been identified as the etiological agent for SARS. Thus, vaccination against SARS-CoV may represent an effective approach to controlling SARS. DNA vaccines are an attractive approach for SARS vaccine development, as they offer many advantages over conventional vaccines, including stability, simplicity, and safety. Our investigators have previously shown that DNA vaccination with antigen linked to calreticulin (CRT) dramatically enhances major histocompatibility complex class I presentation of linked antigen to CD8+ T cells. In this study, we have employed this CRT-based enhancement strategy to create effective DNA vaccines using SARS-CoV nucleocapsid (N) protein as a target antigen. Vaccination with naked CRT/N DNA generated the most potent N-specific humoral and T-cell-mediated immune responses in vaccinated C57BL/6 mice among all of the DNA constructs tested. Furthermore, mice vaccinated with CRT/N DNA were capable of significantly reducing the titer of challenging vaccinia virus expressing the N protein of the SARS virus. These results show that a DNA vaccine encoding CRT linked to a SARS-CoV antigen is capable of generating strong N-specific humoral and cellular immunity and may potentially be useful for control of infection with SARS-CoV.


Journal of Virology | 2004

Development of a DNA Vaccine Targeting Human Papillomavirus Type 16 Oncoprotein E6

Shiwen Peng; Hongxiu Ji; Cornelia L. Trimble; Liangmei He; Ya Chea Tsai; Jessica Yeatermeyer; David A K Boyd; Chien Fu Hung; T. C. Wu

ABSTRACT Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8+ T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8+ T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2Kb, is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8+ T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions.


Gene Therapy | 2001

Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen

Keng Fu Hsu; Chien Fu Hung; Wen-Fang Cheng; Liangmei He; Leigh A. Slater; Morris Ling; T. C. Wu

Naked DNA vaccines represent an attractive approach for generating antigen-specific immunity because of their stability and simplicity of delivery. There are particular concerns with DNA vaccines however, such as potential integration into the host genome, cell transformation, and limited potency. The usage of DNA-based alphaviral RNA replicons (suicidal DNA vectors) may alleviate the concerns of integration or transformation since suicidal DNA vectors eventually cause lysis of transfected cells. To improve further the potency of suicidal DNA vaccines, we evaluated the effect of linking Mycobacterium tuberculosis heat shock protein 70 (Hsp70) to human papillomavirus type 16 (HPV-16) E7 as a model antigen on antigen-specific immunity generated by a DNA-based Semliki Forest virus (SFV) RNA vector, pSCA1. Our results indicated that this suicidal DNA vaccine containing E7/Hsp70 fusion genes generated significantly higher E7-specific T cell-mediated immune responses than vaccines containing the wild-type E7 gene in vaccinated mice. More importantly, this fusion converted a less effective vaccine into one with significant potency against established E7-expressing metastatic tumors. The antitumor effect was predominantly CD8-dependent. These results indicate that linkage of Hsp70 to the antigen may greatly enhance the potency of suicidal DNA vaccines.


Gene Therapy | 2004

Comparison of HPV DNA vaccines employing intracellular targeting strategies

J W Kim; C-F Hung; Jeremy Juang; Liangmei He; T Woo Kim; D K Armstrong; Sara I. Pai; P-J Chen; C-T Lin; David A K Boyd; T. C. Wu

Intradermal vaccination via gene gun efficiently delivers DNA vaccines into dendritic cells (DCs) of the skin, resulting in the activation and priming of antigen-specific T cells in vivo. In the context of DNA vaccines, we previously used the gene gun approach to test several intracellular targeting strategies that are able to route a model antigen, such as the human papillomavirus type-16 (HPV-16) E7, to desired subcellular compartments in order to enhance antigen processing and presentation to T cells. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat-shock protein 70 (HSP70), calreticulin (CRT) and the translocation domain (dII) of Pseudomonas aeruginosa exotoxin A (ETA). Vaccination with DNA vaccines encoding E7 antigen linked to any of these molecules all led to a significant enhancement of E7-specific CD8+ T-cell immune responses and strong antitumor effects against an E7-expressing tumor, TC-1. However, we were interested in identifying the most potent DNA vaccine for our future clinical trials. Thus, we performed a series of experiments to directly compare the potency of the various DNA vaccines. Among the DNA vaccines we tested, we found that vaccination with pcDNA3-CRT/E7 generated the highest number of E7-specific CD8+ T cells and potent long-term protection and treatment effects against E7-expressing tumors in mice. Interestingly, we observed that pcDNA3-CRT/E7 is also capable of protecting against an E7-expressing tumor with downregulated MHC class I expression, a common feature associated with most HPV-associated cervical cancers. Our data suggest that the DNA vaccine linking CRT to E7 (CRT/E7) may be a suitable candidate for human trials for the control of HPV infections and HPV-associated lesions.


Journal of Virology | 2002

Improving DNA Vaccine Potency by Linking Marek's Disease Virus Type 1 VP22 to an Antigen

Chien Fu Hung; Liangmei He; Jeremy Juang; Tzyy Jye Lin; Morris Ling; T. C. Wu

ABSTRACT We have previously employed an intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein to enhance DNA vaccine potency because DNA vaccines lack the intrinsic ability to amplify in cells. Recently, studies have demonstrated that the protein encoded by UL49 of Mareks disease virus type 1 (MDV-1) exhibits some degree of homology to the HSV-1 VP22 protein and features the property of intercellular transport. We therefore generated a DNA vaccine encoding MDV-1 VP22 linked to a model antigen, human papillomavirus type 16 E7. We demonstrated that compared with mice vaccinated with DNA encoding wild-type E7, mice vaccinated with MDV-1 VP22/E7 DNA exhibited a significant increase in number of gamma-interferon-secreting, E7-specific CD8+-T-cell precursors as well as stronger tumor prevention and treatment effects. Furthermore, our data indicated that the antitumor effect was CD8 dependent. These results suggested that the development of vaccines encoding VP22 fused to a target antigen might be a promising strategy for improving DNA vaccine potency.

Collaboration


Dive into the Liangmei He's collaboration.

Top Co-Authors

Avatar

T. C. Wu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chien Fu Hung

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ya Chea Tsai

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Shiwen Peng

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

David A K Boyd

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Wen-Fang Cheng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chien Fu Hung

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ya-Chea Tsai

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge