Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiharu Hitomi is active.

Publication


Featured researches published by Chiharu Hitomi.


Cell | 2008

Mre11 Dimers Coordinate DNA End Bridging and Nuclease Processing in Double-Strand-Break Repair

R. Scott Williams; Gabriel Moncalian; Jessica S. Williams; Yoshiki Yamada; Oliver Limbo; David S. Shin; Lynda M. Groocock; Dana Cahill; Chiharu Hitomi; Grant Guenther; Davide Moiani; James P. Carney; Paul Russell; John A. Tainer

Mre11 forms the core of the multifunctional Mre11-Rad50-Nbs1 (MRN) complex that detects DNA double-strand breaks (DSBs), activates the ATM checkpoint kinase, and initiates homologous recombination (HR) repair of DSBs. To define the roles of Mre11 in both DNA bridging and nucleolytic processing during initiation of DSB repair, we combined small-angle X-ray scattering (SAXS) and crystal structures of Pyrococcus furiosus Mre11 dimers bound to DNA with mutational analyses of fission yeast Mre11. The Mre11 dimer adopts a four-lobed U-shaped structure that is critical for proper MRN complex assembly and for binding and aligning DNA ends. Further, mutations blocking Mre11 endonuclease activity impair cell survival after DSB induction without compromising MRN complex assembly or Mre11-dependant recruitment of Ctp1, an HR factor, to DSBs. These results show how Mre11 dimerization and nuclease activities initiate repair of DSBs and collapsed replication forks, as well as provide a molecular foundation for understanding cancer-causing Mre11 mutations in ataxia telangiectasia-like disorder (ATLD).


Science | 2009

Structural mechanism of abscisic acid binding and signaling by dimeric PYR1.

Kenichi Hitomi; Andrew S. Arvai; Robert P. Rambo; Chiharu Hitomi; Sean R. Cutler; Julian I. Schroeder; Elizabeth D. Getzoff

ABA Receptor Up Close Plants face a variety of environmental stresses, including drought, salinity, and cold. In the face of such stresses, the plant hormone abscisic acid (ABA) triggers adaptive physiological responses. Nishimura et al. (p. 1373, published online 22 October; see the Perspective by Sussman and Phillips) have now analyzed the crystal structure of one member of the ABA receptor family, PYR1 (pyrabactin resistance 1). The ABA molecule binds within an internal pocket of PYR1, where it probably induces a conformational change. The plant hormone responsible for drought tolerance signals by inducing conformational changes in its dimeric protein receptor. The phytohormone abscisic acid (ABA) acts in seed dormancy, plant development, drought tolerance, and adaptive responses to environmental stresses. Structural mechanisms mediating ABA receptor recognition and signaling remain unknown but are essential for understanding and manipulating abiotic stress resistance. Here, we report structures of pyrabactin resistance 1 (PYR1), a prototypical PYR/PYR1-like (PYL)/regulatory component of ABA receptor (RCAR) protein that functions in early ABA signaling. The crystallographic structure reveals an α/β helix–grip fold and homodimeric assembly, verified in vivo by coimmunoprecipitation. ABA binding within a large internal cavity switches structural motifs distinguishing ABA-free “open-lid” from ABA-bound “closed-lid” conformations. Small-angle x-ray scattering suggests that ABA signals by converting PYR1 to a more compact, symmetric closed-lid dimer. Site-directed PYR1 mutants designed to disrupt hormone binding lose ABA-triggered interactions with type 2C protein phosphatase partners in planta.


The EMBO Journal | 2003

Full-length archaeal Rad51 structure and mutants: Mechanisms for RAD51 assembly and control by BRCA2

David S. Shin; Luca Pellegrini; Douglas S. Daniels; Biana Yelent; Lisa Craig; Debbie Bates; David S. Yu; Mahmud K.K. Shivji; Chiharu Hitomi; Andrew S. Arvai; Niels Volkmann; Hiro Tsuruta; Tom L. Blundell; Ashok R. Venkitaraman; John A. Tainer

To clarify RAD51 interactions controlling homologous recombination, we report here the crystal structure of the full‐length RAD51 homolog from Pyrococcus furiosus. The structure reveals how RAD51 proteins assemble into inactive heptameric rings and active DNA‐bound filaments matching three‐dimensional electron microscopy reconstructions. A polymerization motif (RAD51‐PM) tethers individual subunits together to form assemblies. Subunit interactions support an allosteric ‘switch’ promoting ATPase activity and DNA binding roles for the N‐terminal domain helix–hairpin–helix (HhH) motif. Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes. A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2‐dependent nuclear foci in human cells in response to γ‐irradiation‐induced DNA damage, similar to human RAD51. These results show that BRCA2 repeats mimic the RAD51‐PM and imply analogous RAD51 interactions with RAD52 and RAD54. Both BRCA2 and RAD54 may act as antagonists and chaperones for RAD51 filament assembly by coupling RAD51 interface exchanges with DNA binding. Together, these structural and mutational results support an interface exchange hypothesis for coordinated protein interactions in homologous recombination.


Nature Structural & Molecular Biology | 2006

WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing.

J. Jefferson P. Perry; Steven M. Yannone; Lauren G. Holden; Chiharu Hitomi; Aroumougame Asaithamby; Seungil Han; Priscilla K. Cooper; David J. Chen; John A. Tainer

WRN is unique among the five human RecQ DNA helicases in having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end joining. Metal-ion complex structures, active site mutations and activity assays reveal a nuclease mechanism mediated by two metal ions. The DNA end–binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ-family replicative proofreading exonucleases, describing WRN-specific adaptations consistent with double-stranded DNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support DnaQ-like proofreading activities stimulated by Ku70/80, with implications for WRN functions in age-related pathologies and maintenance of genomic integrity.


eLife | 2014

FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis

Rainer Waadt; Kenichi Hitomi; Chiharu Hitomi; Stephen R. Adams; Elizabeth D. Getzoff; Julian I. Schroeder

Abscisic acid (ABA) is a plant hormone that regulates plant growth and development and mediates abiotic stress responses. Direct cellular monitoring of dynamic ABA concentration changes in response to environmental cues is essential for understanding ABA action. We have developed ABAleons: ABA-specific optogenetic reporters that instantaneously convert the phytohormone-triggered interaction of ABA receptors with PP2C-type phosphatases to send a fluorescence resonance energy transfer (FRET) signal in response to ABA. We report the design, engineering and use of ABAleons with ABA affinities in the range of 100–600 nM to map ABA concentration changes in plant tissues with spatial and temporal resolution. High ABAleon expression can partially repress Arabidopsis ABA responses. ABAleons report ABA concentration differences in distinct cell types, ABA concentration increases in response to low humidity and NaCl in guard cells and to NaCl and osmotic stress in roots and ABA transport from the hypocotyl to the shoot and root. DOI: http://dx.doi.org/10.7554/eLife.01739.001


Journal of Molecular Biology | 2009

Superoxide Dismutase from the Eukaryotic Thermophile Alvinella pompejana: Structures, Stability, Mechanism, and Insights into Amyotrophic Lateral Sclerosis.

David S. Shin; Michael DiDonato; David P. Barondeau; Greg L. Hura; Chiharu Hitomi; J. Andrew Berglund; Elizabeth D. Getzoff; S. Craig Cary; John A. Tainer

Prokaryotic thermophiles supply stable human protein homologs for structural biology; yet, eukaryotic thermophiles would provide more similar macromolecules plus those missing in microbes. Alvinella pompejana is a deep-sea hydrothermal-vent worm that has been found in temperatures averaging as high as 68 degrees C, with spikes up to 84 degrees C. Here, we used Cu,Zn superoxide dismutase (SOD) to test if this eukaryotic thermophile can provide insights into macromolecular mechanisms and stability by supplying better stable mammalian homologs for structural biology and other biophysical characterizations than those from prokaryotic thermophiles. Identification, cloning, characterization, X-ray scattering (small-angle X-ray scattering, SAXS), and crystal structure determinations show that A. pompejana SOD (ApSOD) is superstable, homologous, and informative. SAXS solution analyses identify the human-like ApSOD dimer. The crystal structure shows the active site at 0.99 A resolution plus anchoring interaction motifs in loops and termini accounting for enhanced stability of ApSOD versus human SOD. Such stabilizing features may reduce movements that promote inappropriate intermolecular interactions, such as amyloid-like filaments found in SOD mutants causing the neurodegenerative disease familial amyotrophic lateral sclerosis or Lou Gehrigs disease. ApSOD further provides the structure of a long-sought SOD product complex at 1.35 A resolution, suggesting a unified inner-sphere mechanism for catalysis involving metal ion movement. Notably, this proposed mechanism resolves apparent paradoxes regarding electron transfer. These results extend knowledge of SOD stability and catalysis and suggest that the eukaryote A. pompejana provides macromolecules highly similar to those from humans, but with enhanced stability more suitable for scientific and medical applications.


Molecular and Cellular Biology | 2011

DNA repair and global sumoylation are regulated by distinct Ubc9 noncovalent complexes.

John Prudden; J. Jefferson P. Perry; Minghua Nie; Ajay A. Vashisht; Andrew S. Arvai; Chiharu Hitomi; Grant Guenther; James A. Wohlschlegel; John A. Tainer; Michael N. Boddy

ABSTRACT Global sumoylation, SUMO chain formation, and genome stabilization are all outputs generated by a limited repertoire of enzymes. Mechanisms driving selectivity for each of these processes are largely uncharacterized. Here, through crystallographic analyses we show that the SUMO E2 Ubc9 forms a noncovalent complex with a SUMO-like domain of Rad60 (SLD2). Ubc9:SLD2 and Ubc9:SUMO noncovalent complexes are structurally analogous, suggesting that differential recruitment of Ubc9 by SUMO or Rad60 provides a novel means for such selectivity. Indeed, deconvoluting Ubc9 function by disrupting either the Ubc9:SLD2 or Ubc9:SUMO noncovalent complex reveals distinct roles in facilitating sumoylation. Ubc9:SLD2 acts in the Nse2 SUMO E3 ligase-dependent pathway for DNA repair, whereas Ubc9:SUMO instead promotes global sumoylation and chain formation, via the Pli1 E3 SUMO ligase. Moreover, this Pli1-dependent SUMO chain formation causes the genome instability phenotypes of SUMO-targeted ubiquitin ligase (STUbL) mutants. Overall, we determine that, unexpectedly, Ubc9 noncovalent partner choice dictates the role of sumoylation in distinct cellular pathways.


EMBO Reports | 2014

RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response.

Lynda M. Groocock; Minghua Nie; John Prudden; Davide Moiani; Tao Wang; Anton Cheltsov; Robert P. Rambo; Andrew S. Arvai; Chiharu Hitomi; John A. Tainer; Karolin Luger; J. Jefferson P. Perry; Eros Lazzerini-Denchi; Michael N. Boddy

The post‐translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin‐like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO‐modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome‐targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome‐targeting is crucially required for the repair of TRF2‐depleted dysfunctional telomeres by 53BP1‐mediated non‐homologous end joining.


Journal of Biological Chemistry | 2012

Eukaryotic Class II Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals Basis for Improved Ultraviolet Tolerance in Plants

Kenichi Hitomi; Andrew S. Arvai; Junpei Yamamoto; Chiharu Hitomi; Mika Teranishi; Tokuhisa Hirouchi; Kazuo Yamamoto; Shigenori Iwai; John A. Tainer; Jun Hidema; Elizabeth D. Getzoff

Background: UV-tolerant rice strains exhibit higher photolyase DNA repair of UV-induced cyclobutane pyrimidine dimers (CPDs). Results: The first eukaryotic CPD photolyase structure reveals differences in active-site, flavin hydrogen-bonding, and electron transfer and allows mapping of UV-resistance polymorphisms. Conclusion: Critical functional features are conserved by convergent evolution. Significance: This structure provides a paradigm for light-dependent DNA repair in higher organisms and development of UV-resistant plants. Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280–315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.


Biochemistry | 2005

Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.

Timothy Wood; David P. Barondeau; Chiharu Hitomi; Carey J. Kassmann; John A. Tainer; Elizabeth D. Getzoff

Collaboration


Dive into the Chiharu Hitomi's collaboration.

Top Co-Authors

Avatar

John A. Tainer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Arvai

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

David S. Shin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenichi Hitomi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert P. Rambo

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Aroumougame Asaithamby

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge