Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian I. Schroeder is active.

Publication


Featured researches published by Julian I. Schroeder.


Nature | 2000

Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.

Zhen-Ming Pei; Yoshiyuki Murata; Gregor Benning; Sébastien Thomine; Birgit Klüsener; Gethyn J. Allen; Erwin Grill; Julian I. Schroeder

Drought is a major threat to agricultural production. Plants synthesize the hormone abscisic acid (ABA) in response to drought, triggering a signalling cascade in guard cells that results in stomatal closure, thus reducing water loss. ABA triggers an increase in cytosolic calcium in guard cells ([Ca2+]cyt) that has been proposed to include Ca2+ influx across the plasma membrane. However, direct recordings of Ca 2+ currents have been limited and the upstream activation mechanisms of plasma membrane Ca2+ channels remain unknown. Here we report activation of Ca2+-permeable channels in the plasma membrane of Arabidopsis guard cells by hydrogen peroxide. The H2O2-activated Ca2+ channels mediate both influx of Ca2+ in protoplasts and increases in [Ca 2+]cyt in intact guard cells. ABA induces the production of H2O2 in guard cells. If H2O2 production is blocked, ABA-induced closure of stomata is inhibited. Moreover, activation of Ca2+ channels by H2O2 and ABA- and H2O2-induced stomatal closing are disrupted in the recessive ABA-insensitive mutant gca2. These data indicate that ABA-induced H2O2 production and the H2O 2-activated Ca2+ channels are important mechanisms for ABA-induced stomatal closing.


Science | 2009

Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins

Sang-Youl Park; Pauline Fung; Davin R. Jensen; Hiroaki Fujii; Yang Zhao; Shelley Lumba; Julia Santiago; Americo Rodrigues; Tsz-fung Freeman Chow; Simon E. Alfred; Dario Bonetta; Ruth R. Finkelstein; Nicholas J. Provart; Darrell Desveaux; Pedro L. Rodriguez; Peter McCourt; Jian-Kang Zhu; Julian I. Schroeder; Brian F. Volkman; Sean R. Cutler

ABA Receptor Rumbled? The plant hormone abscisic acid (ABA) is critical for normal development and for mediating plant responses to stressful environmental conditions. Now, two papers present analyses of candidate ABA receptors (see the news story by Pennisi). Ma et al. (p. 1064; published online 30 April) and Park et al. (p. 1068, published online 30 April) used independent strategies to search for proteins that physically interact with ABI family phosphatase components of the ABA response signaling pathway. Both groups identified different members of the same family of proteins, which appear to interact with ABI proteins to form a heterocomplex that can act as the ABA receptor. The variety of both families suggests that the ABA receptor may not be one entity, but rather a class of closely related complexes, which may explain previous difficulties in establishing its identity. Links between two ancient multimember protein families signal responses to the plant hormone abscisic acid. Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.


The EMBO Journal | 2003

NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in arabidopsis

June M. Kwak; Izumi C. Mori; Zhen-Ming Pei; Nathalie Leonhardt; Miguel Angel Torres; Jeffery L. Dangl; Rachel E. Bloom; Sara Bodde; Jonathan D. G. Jones; Julian I. Schroeder

Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell‐expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA‐induced stomatal closing, ABA promotion of ROS production, ABA‐induced cytosolic Ca2+ increases and ABA‐ activation of plasma membrane Ca2+‐permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate‐limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.


Annual Review of Plant Biology | 2010

Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

Tae-Houn Kim; Maik Böhmer; Honghong Hu; Julian I. Schroeder

Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO(2) influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO(2) activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO(2) and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO(2)-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants

Antje Heese; Dagmar R. Hann; Selena Gimenez-Ibanez; Alexandra M. E. Jones; Kai He; Jia Li; Julian I. Schroeder; Scott C. Peck; John P. Rathjen

In pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), plant cell surface receptors sense potential microbial pathogens by recognizing elicitors called PAMPs. Although diverse PAMPs trigger PTI through distinct receptors, the resulting intracellular responses overlap extensively. Despite this, a common component(s) linking signal perception with transduction remains unknown. In this study, we identify SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)3/brassinosteroid-associated kinase (BAK)1, a receptor-like kinase previously implicated in hormone signaling, as a component of plant PTI. In Arabidopsis thaliana, AtSERK3/BAK1 rapidly enters an elicitor-dependent complex with FLAGELLIN SENSING 2 (FLS2), the receptor for the bacterial PAMP flagellin and its peptide derivative flg22. In the absence of AtSERK3/BAK1, early flg22-dependent responses are greatly reduced in both A. thaliana and Nicotiana benthamiana. Furthermore, N. benthamiana Serk3/Bak1 is required for full responses to unrelated PAMPs and, importantly, for restriction of bacterial and oomycete infections. Thus, SERK3/BAK1 appears to integrate diverse perception events into downstream PAMP responses, leading to immunity against a range of invading microbes.


Nature | 2001

Guard cell abscisic acid signalling and engineering drought hardiness in plants

Julian I. Schroeder; June M. Kwak; Gethyn J. Allen

Guard cells are located in the epidermis of plant leaves, and in pairs surround stomatal pores. These control both the influx of CO2 as a raw material for photosynthesis and water loss from plants through transpiration to the atmosphere. Guard cells have become a highly developed system for dissecting early signal transduction mechanisms in plants. In response to drought, plants synthesize the hormone abscisic acid, which triggers closing of stomata, thus reducing water loss. Recently, central regulators of guard cell abscisic acid signalling have been discovered. The molecular understanding of the guard cell signal transduction network opens possibilities for engineering stomatal responses to control CO2 intake and plant water loss.


The EMBO Journal | 1999

Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast

Stephan Clemens; Eugene J. Kim; Dieter Neumann; Julian I. Schroeder

Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of ∼55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS‐expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS‐induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.


Science | 1995

Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance

Francisco Rubio; Walter Gassmann; Julian I. Schroeder

Sodium (Na+) at high millimolar concentrations in soils is toxic to most higher plants and severely reduces agricultural production worldwide. However, the molecular mechanisms for plant Na+ uptake remain unknown. Here, the wheat root high-affinity potassium (K+) uptake transporter HKT1 was shown to function as a high-affinity K+-Na+ cotransporter. High-affinity K+ uptake was activated by micromolar Na+ concentrations; moreover, high-affinity Na+ uptake was activated by K+ (half-activation constant, 2.8 μM K+). However, at physiologically detrimental concentrations of Na+, K+ accumulation mediated by HKT1 was blocked and low-affinity Na+ uptake occurred (Michaelis constant, ∼16 mM Na+), which correlated to Na+ toxicity in plants. Point mutations in the sixth putative transmembrane domain of HKT1 that increase Na+ tolerance were isolated with the use of yeast as a screening system. Na+ uptake and Na+ inhibition of K+ accumulation indicate a possible role for HKT1 in physiological Na+ toxicity in plants.


Cell | 1993

The herbicide sensitivity gene CHL1 of arabidopsis encodes a nitrate-inducible nitrate transporter

Yi-Fang Tsay; Julian I. Schroeder; Kenneth A. Feldmann; Nigel M. Crawford

This paper reports the identification and functional expression of a gene that is involved in nitrate uptake in plants, a process essential for the assimilation of nitrate and the biological removal of nitrate from the soil solution. The CHL1 gene of Arabidopsis, which when mutated confers resistance to the herbicide chlorate and a decrease in nitrate uptake, was isolated and found to encode a protein with 12 putative membrane-spanning segments. Injection of CHL1 mRNA into Xenopus oocytes produces a nitrate- and pH-dependent membrane depolarization, inward current, and nitrate uptake. These data show that the CHL1 gene encodes an electrogenic nitrate transporter. CHL1 mRNA is found predominantly in roots and displays nitrate- and pH-dependent regulation.


Nature | 2008

SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling.

Triin Vahisalu; Hannes Kollist; Yong-Fei Wang; Wai-Yin Chan; Gabriel Valerio; Airi Lamminmäki; Mikael Brosché; Heino Moldau; Radhika Desikan; Julian I. Schroeder; Jaakko Kangasjärvi

Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone — an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.

Collaboration


Dive into the Julian I. Schroeder's collaboration.

Top Co-Authors

Avatar

June M. Kwak

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

John M. Ward

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honghong Hu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Hauser

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaowu Xue

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge