Chiharu Tohyama
University of Tsukuba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiharu Tohyama.
PLOS ONE | 2012
Toshihiro Endo; Masaki Kakeyama; Yukari Uemura; Asahi Haijima; Hiroyuki Okuno; Haruhiko Bito; Chiharu Tohyama
An increasing prevalence of mental health problems has been partly ascribed to abnormal brain development that is induced upon exposure to environmental chemicals. However, it has been extremely difficult to detect and assess such causality particularly at low exposure levels. To address this question, we here investigated higher brain function in mice exposed to dioxin in utero and via lactation by using our recently developed automated behavioral flexibility test and immunohistochemistry of neuronal activation markers Arc, at the 14 brain areas. Pregnant C57BL/6 mice were given orally a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a dose of either 0, 0.6 or 3.0 µg/kg on gestation day 12.5. When the pups reached adulthood, they were group-housed in IntelliCage to assess their behavior. As a result, the offspring born to dams exposed to 0.6 µg TCDD/kg were shown to have behavioral inflexibility, compulsive repetitive behavior, and dramatically lowered competitive dominance. In these mice, immunohistochemistry of Arc exhibited the signs of hypoactivation of the medial prefrontal cortex (mPFC) and hyperactivation of the amygdala. Intriguingly, mice exposed to 3.0 µg/kg were hardly affected in both the behavioral and neuronal activation indices, indicating that the robust, non-monotonic dose-response relationship. In conclusion, this study showed for the first time that perinatal exposure to a low dose of TCDD in mice develops executive function deficits and social behavioral abnormality accompanied with the signs of imbalanced mPFC-amygdala activation.
Neurotoxicology and Teratology | 2015
Eiki Kimura; Ken Ichiro Kubo; Chieri Matsuyoshi; Seico Benner; Mayuko Hosokawa; Toshihiro Endo; Wenting Ling; Masanobu Kohda; Kazuhito Yokoyama; Kazunori Nakajima; Masaki Kakeyama; Chiharu Tohyama
Increased prevalence of mental disorders cannot be solely attributed to genetic factors and is considered at least partly attributable to chemical exposure. Among various environmental chemicals, in utero and lactational dioxin exposure has been extensively studied and is known to induce higher brain function abnormalities in both humans and laboratory animals. However, how the perinatal dioxin exposure affects neuromorphological alterations has remained largely unknown. Therefore, in this study, we initially studied whether and how the over-expression of aryl hydrocarbon receptor (AhR), a dioxin receptor, would affect the dendritic growth in the hippocampus of the developing brain. Transfecting a constitutively active AhR plasmid into the hippocampus via in utero electroporation on gestational day (GD) 14 induced abnormal dendritic branch growth. Further, we observed that 14-day-old mice born to dams administered with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 μg/kg) on GD 12.5 exhibited disrupted dendritic branch growth in both the hippocampus and amygdala. Finally, we observed that 16-month-old mice born to dams exposed to perinatal TCDD as described above exhibited significantly reduced spine densities. These results indicated that abnormal micromorphology observed in the developing brain may persist until adulthood and may induce abnormal higher brain function later in life.
Frontiers in Neuroscience | 2016
Kazuhiro Sano; Tomohiko Isobe; Jiaxin Yang; Tin-Tin Win-Shwe; Mitsuha Yoshikane; Shoji F. Nakayama; Takaharu Kawashima; Go Suzuki; Shunji Hashimoto; Keiko Nohara; Chiharu Tohyama; Fumihiko Maekawa
Neonicotinoids, a widely used group of pesticides designed to selectively bind to insect nicotinic acetylcholine receptors, were considered relatively safe for mammalian species. However, they have been found to activate vertebrate nicotinic acetylcholine receptors and could be toxic to the mammalian brain. In the present study, we evaluated the developmental neurotoxicity of acetamiprid (ACE), one of the most widely used neonicotinoids, in C57BL/6J mice whose mothers were administered ACE via gavage at doses of either 0 mg/kg (control group), 1.0 mg/kg (low-dose group), or 10.0 mg/kg (high-dose group) from gestational day 6 to lactation day 21. The results of a battery of behavior tests for socio-sexual and anxiety-related behaviors, the numbers of vasopressin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and testosterone levels were used as endpoints. In addition, behavioral flexibility in mice was assessed in a group-housed environment using the IntelliCage, a fully automated mouse behavioral analysis system. In adult male mice exposed to ACE at both low and high doses, a significant reduction of anxiety level was found in the light-dark transition test. Males in the low-dose group also showed a significant increase in sexual and aggressive behaviors. In contrast, neither the anxiety levels nor the sexual behaviors of females were altered. No reductions in the testosterone level, the number of vasopressin-immunoreactive cells, or behavioral flexibility were detected in either sex. These results suggest the possibility that in utero and lactational ACE exposure interferes with the development of the neural circuits required for executing socio-sexual and anxiety-related behaviors in male mice specifically.
Scientific Reports | 2012
Wataru Yoshioka; Nozomi Endo; Akie Kurashige; Asahi Haijima; Toshihiro Endo; Toshiyuki Shibata; Ryutaro Nishiyama; Masaki Kakeyama; Chiharu Tohyama
A histoanatomical context is imperative in an analysis of gene expression in a cell in a tissue to elucidate physiological function of the cell. In this study, we made technical advances in fluorescence laser microdissection (LMD) in combination with the absolute quantification of small amounts of mRNAs from a region of interest (ROI) in fluorescence-labeled tissue sections. We demonstrate that our fluorescence LMD-RTqPCR method has three orders of dynamic range, with the lower limit of ROI-size corresponding to a single cell. The absolute quantification of the expression levels of the immediate early genes in an ROI equivalent to a few hundred neurons in the hippocampus revealed that mice transferred from their home cage to a novel environment have distinct activation profiles in the hippocampal regions (CA1, CA3, and DG) and that the gene expression pattern in CA1, but not in the other regions, follows a power law distribution.
The Journal of Neuroscience | 2015
Kazuhiro Ishii; Ken Ichiro Kubo; Toshihiro Endo; Keitaro Yoshida; Seico Benner; Yukiko Ito; Hidenori Aizawa; Michihiko Aramaki; Akihiro Yamanaka; Kohichi Tanaka; Norio Takata; Kenji F. Tanaka; Masaru Mimura; Chiharu Tohyama; Masaki Kakeyama; Kazunori Nakajima
Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. SIGNIFICANCE STATEMENT Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities.
Scientific Reports | 2016
Eiki Kimura; Yunjie Ding; Chiharu Tohyama
Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals.
Frontiers in Neuroscience | 2016
Kyaw Htet Aung; Chaw Kyi-Tha-Thu; Kazuhiro Sano; Kazuaki Nakamura; Akito Tanoue; Keiko Nohara; Masaki Kakeyama; Chiharu Tohyama; Shinji Tsukahara; Fumihiko Maekawa
Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.
Frontiers in Neuroscience | 2015
Seico Benner; Toshihiro Endo; Masaki Kakeyama; Chiharu Tohyama
Dominant and subordinate dispositions are not only determined genetically but also nurtured by environmental stimuli during neuroendocrine development. However, the relationship between early life environment and dominance behavior remains elusive. Using the IntelliCage-based competition task for group-housed mice, we have previously described two cases in which environmental insults during the developmental period altered the outcome of dominance behavior later in life. First, mice that were repeatedly isolated from their mother and their littermates (early deprivation; ED), and second, mice perinatally exposed to an environmental pollutant, dioxin, both exhibited subordinate phenotypes, defined by decreased occupancy of limited resource sites under highly competitive circumstances. Similar alterations found in the cortex and limbic area of these two models are suggestive of the presence of neural systems shared across generalized dominance behavior.
Journal of Toxicological Sciences | 2017
Eiki Kimura; Ken Ichiro Kubo; Toshihiro Endo; Kazunori Nakajima; Masaki Kakeyama; Chiharu Tohyama
The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.
Frontiers in Endocrinology | 2016
Wenting Ling; Toshihiro Endo; Ken Ichiro Kubo; Kazunori Nakajima; Masaki Kakeyama; Chiharu Tohyama
Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.