Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chikara Abe is active.

Publication


Featured researches published by Chikara Abe.


Journal of Clinical Investigation | 2016

Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

Tsuyoshi Inoue; Chikara Abe; Sun sang J. Sung; Stefan Moscalu; Jakub Jankowski; Liping Huang; Hong Ye; Diane L. Rosin; Patrice G. Guyenet; Mark D. Okusa

The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.


Nature Neuroscience | 2017

C1 neurons mediate a stress-induced anti-inflammatory reflex in mice

Chikara Abe; Tsuyoshi Inoue; Mabel A Inglis; Kenneth E. Viar; Liping Huang; Hong Ye; Diane L. Rosin; Ruth L. Stornetta; Mark D. Okusa; Patrice G. Guyenet

C1 neurons, located in the medulla oblongata, mediate adaptive autonomic responses to physical stressors (for example, hypotension, hemorrhage and presence of lipopolysaccharides). We describe here a powerful anti-inflammatory effect of restraint stress, mediated by C1 neurons: protection against renal ischemia-reperfusion injury. Restraint stress or optogenetic C1 neuron (C1) stimulation (10 min) protected mice from ischemia-reperfusion injury (IRI). The protection was reproduced by injecting splenic T cells that had been preincubated with noradrenaline or splenocytes harvested from stressed mice. Stress-induced IRI protection was absent in Chrna7 knockout (a7nAChR−/−) mice and greatly reduced by destroying or transiently inhibiting C1. The protection conferred by C1 stimulation was eliminated by splenectomy, ganglionic-blocker administration or β2-adrenergic receptor blockade. Although C1 stimulation elevated plasma corticosterone and increased both vagal and sympathetic nerve activity, C1-mediated IRI protection persisted after subdiaphragmatic vagotomy or corticosterone receptor blockade. Overall, acute stress attenuated IRI by activating a cholinergic, predominantly sympathetic, anti-inflammatory pathway. C1s were necessary and sufficient to mediate this effect.


Journal of Applied Physiology | 2011

Interaction between vestibulo-cardiovascular reflex and arterial baroreflex during postural change in rats

Chikara Abe; Toru Kawada; Masaru Sugimachi; Hironobu Morita

To examine a cooperative role for the baroreflex and the vestibular system in controlling arterial pressure (AP) during voluntary postural change, AP was measured in freely moving conscious rats, with or without sinoaortic baroreceptor denervation (SAD) and/or peripheral vestibular lesion (VL). Voluntary rear-up induced a slight decrease in AP (-5.6 ± 0.8 mmHg), which was significantly augmented by SAD (-14.7 ± 1.0 mmHg) and further augmented by a combination of VL and SAD (-21 ± 1.0 mmHg). Thus we hypothesized that the vestibular system sensitizes the baroreflex during postural change. To test this hypothesis, open-loop baroreflex analysis was conducted on anesthetized sham-treated and VL rats. The isolated carotid sinus pressure was increased stepwise from 60 to 180 mmHg while rats were placed horizontal prone or in a 60° head-up tilt (HUT) position. HUT shifted the carotid sinus pressure-sympathetic nerve activity (SNA) relationship (neural arc) to a higher SNA, shifted the SNA-AP relationship (peripheral arc) to a lower AP, and, consequently, moved the operating point to a higher SNA while maintaining AP (from 113 ± 5 to 114 ± 5 mmHg). The HUT-induced neural arc shift was completely abolished in VL rats, whereas the peripheral arc shifted to a lower AP and the operating point moved to a lower AP (from 116 ± 3 to 84 ± 5 mmHg). These results indicate that the vestibular system elicits sympathoexcitation, shifting the baroreflex neural arc to a higher SNA and maintaining AP during HUT.


Journal of Applied Physiology | 2010

Vestibular-mediated increase in central serotonin plays an important role in hypergravity-induced hypophagia in rats

Chikara Abe; Kunihiko Tanaka; Chihiro Iwata; Hironobu Morita

Exposure to a hypergravity environment induces acute transient hypophagia, which is partially restored by a vestibular lesion (VL), suggesting that the vestibular system is involved in the afferent pathway of hypergravity-induced hypophagia. When rats were placed in a 3-G environment for 14 days, Fos-containing cells increased in the paraventricular hypothalamic nucleus, the central nucleus of the amygdala, the medial vestibular nucleus, the raphe nucleus, the nucleus of the solitary tract, and the area postrema. The increase in Fos expression was completely abolished or significantly suppressed by VL. Therefore, these regions may be critical for the initiation and integration of hypophagia. Because the vestibular nucleus contains serotonergic neurons and because serotonin (5-HT) is a key neurotransmitter in hypophagia, with possible involvement in motion sickness, we hypothesized that central 5-HT increases during hypergravity and induces hypophagia. To examine this proposition, the 5-HT concentrations in the cerebrospinal fluid were measured when rats were reared in a 3-G environment for 14 days. The 5-HT concentrations increased in the hypergravity environment, and these increases were completely abolished in rats with VL. Furthermore, a 5-HT(2A) antagonist (ketanserin) significantly reduced 3-G (120 min) load-induced Fos expression in the medial vestibular nucleus, and chronically administered ketanserin ameliorated hypergravity-induced hypophagia. These results indicate that hypergravity induces an increase in central 5-HT via the vestibular input and that this increase plays a significant role in hypergravity-induced hypophagia. The 5-HT(2A) receptor is involved in the signal transduction of hypergravity stress in the vestibular nucleus.


PLOS ONE | 2015

Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

Hironobu Morita; Koji Obata; Chikara Abe; Dai Shiba; Masaki Shirakawa; Takashi Kudo; Satoru Takahashi

To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.


Scientific Reports | 2016

Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex

Hironobu Morita; Chikara Abe; Kunihiko Tanaka

The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitive after spaceflight because of orthostatic intolerance potentially induced by long-term exposure to microgravity. To test this hypothesis in humans, we investigated the ability of the VCR to maintain blood pressure upon head-up tilt before and after a 4–6 months stay on the International Space Station. To detect the functional state of the VCR, galvanic vestibular stimulation (GVS) was applied. As GVS transiently interrupts the vestibular-mediated pressor response, impaired VCR is detected when the head-up tilt-induced blood pressure response does not depend on GVS. During the first 20 s of head-up tilt, a transient blood pressure increase (11.9 ± 1.6 mmHg) was observed at pre-spaceflight but not at 1–4 days after return from spaceflight. The magnitude of VCR recovered to the pre-spaceflight levels within 2 months after return. These results indicate that long-term exposure to microgravity induces VCR impairment, which may be involved in a mechanism of spaceflight-induced orthostatic intolerance.


Autonomic Neuroscience: Basic and Clinical | 2013

Arterial pressure oscillation and muscle sympathetic nerve activity after 20 days of head-down bed rest

Kunihiko Tanaka; Naoki Nishimura; Maki Sato; Dominika Kanikowska; Yuuki Shimizu; Yoko Inukai; Chikara Abe; Chihiro Iwata; Hironobu Morita; Satoshi Iwase; Junichi Sugenoya

Both spectral power within the low-frequency component, i.e., 0.04 to 0.15 Hz, of systolic pressure and muscle sympathetic nerve activity are increased during head-up tilt. The nerve activity during tilt is altered after space flight and exposure to simulated microgravity. In the present study, correlations of the low-frequency component and the nerve activity were analyzed before and after 20 days of -6° of head-down bed rest. Measurements were performed at -6° head-down bed rest, 0° (flat), and 30° and 60° head-up tilt (HUT). Mean arterial pressure during HUT was not different between pre- and post-bed rest, but muscle sympathetic nerve activity in post-bed rest significantly increased at tilt angles of -6°, 0°, 30°, and 60° compared with those during pre-bed rest. The low-frequency component of systolic pressure also significantly increased during post-bed rest compared with pre-bed rest at tilts of 0°, 30°, and 60°. The nerve activity and the frequency component were linearly correlated for individual (r(2) = 0.51-0.88) and averaged (r(2) = 0.60) values when the values included both pre- and post-bed rest. Thus, the low-frequency component of systolic pressure could be an index of the muscle sympathetic nerve activity during tilt during pre- and post-bed rest.


Journal of Applied Physiology | 2009

Galvanic vestibular stimulation counteracts hypergravity-induced plastic alteration of vestibulo-cardiovascular reflex in rats

Chikara Abe; Kunihiko Tanaka; Chihiro Awazu; Hironobu Morita

Recent data from our laboratory demonstrated that, when rats are raised in a hypergravity environment, the sensitivity of the vestibulo-cardiovascular reflex decreases. In a hypergravity environment, static input to the vestibular system is increased; however, because of decreased daily activity, phasic input to the vestibular system may decrease. This decrease may induce use-dependent plasticity of the vestibulo-cardiovascular reflex. Accordingly, we hypothesized that galvanic vestibular stimulation (GVS) may compensate the decrease in phasic input to the vestibular system, thereby preserving the vestibulo-cardiovascular reflex. To examine this hypothesis, we measured horizontal and vertical movements of rats under 1-G or 3-G environments as an index of the phasic input to the vestibular system. We then raised rats in a 3-G environment with or without GVS for 6 days and measured the pressor response to linear acceleration to examine the sensitivity of the vestibulo-cardiovascular reflex. The horizontal and vertical movement of 3-G rats was significantly less than that of 1-G rats. The pressor response to forward acceleration was also significantly lower in 3-G rats (23 +/- 1 mmHg in 1-G rats vs. 12 +/- 1 mmHg in 3-G rats). The pressor response was preserved in 3-G rats with GVS (20 +/- 1 mmHg). GVS stimulated Fos expression in the medial vestibular nucleus. These results suggest that GVS stimulated vestibular primary neurons and prevent hypergravity-induced decrease in sensitivity of the vestibulo-cardiovascular reflex.


Neuroscience Letters | 2011

Effect of daily linear acceleration training on the hypergravity-induced vomiting response in house musk shrew (Suncus murinus)

Chikara Abe; Chihiro Iwata; Takahiko Shiina; Yasutake Shimizu; Hironobu Morita

The effects of repeated linear acceleration training and the antimotion sickness drug, promethazine, on hypergravity-induced motion sickness were examined in musk shrew (Suncus murinus), which is known to show a vomiting response to motion stimulation. Animals were assigned into five groups: vestibular intact, untreated animals (Sham), vestibular lesioned (VL) animals, vestibular intact animals with promethazine hydrochloride administered as daily drinking water (Prom), vestibular intact animals who underwent horizontal linear accelerator motion training (Train), and vestibular intact animals treated with both promethazine hydrochloride and linear acceleration training (Prom+Train). In Sham animals, the number of vomiting episodes was 14±2 during 2 G exposure for 10min, and was accompanied by intense Fos expression in the medial vestibular nucleus (MVe), the nucleus of the solitary tract (NTS), the area postrema (AP), and the paraventricular hypothalamic nucleus (PVN). The vomiting response and Fos expression were completely abolished in VL animals, indicating that these responses are mediated via the vestibular system. Although Train and Prom animals experienced a significantly reduced number of hypergravity-induced vomiting episodes compared with Sham animals, the effect was significantly greater in Train animals than in Prom animals. Fos expression in the NTS, AP, and PVN were significantly more reduced in Train animals than in Prom animals. Higher dose of bolus injection of promethazine (50mg/kg, i.p.) completely abolished the vomiting episodes, although the animals were drowsy and sedated due to side effects. In conclusion, daily linear acceleration training and promethazine could prevent the hypergravity-induced vomiting episodes.


Hypertension Research | 2011

Negative feedforward control of body fluid homeostasis by hepatorenal reflex.

Hironobu Morita; Chikara Abe

The liver, well known for its role in metabolism, clearance and storage can also be regarded as a sensory organ. The liver is an ideal place to monitor the quality and quantity of absorbed substances, because portal blood delivers substances absorbed from the intestine to the liver and these substances circulate in the hepatic vasculature before substances enter the systemic circulation. Sodium (Na+)-sensitive mechanism exists in the liver; it is stimulated by the increase in Na+ concentration in the portal vein, and then hepatorenal reflex is triggered. Renal sympathetic nerve activity is reflexively decreased and urinary Na+ excretion is increased. This Na+-sensitive hepatorenal reflex has a significant role in post-prandial natriuresis. However, the long-term role of this reflex in Na+ homeostasis may be less important, probably because of the desensitization of Na+-sensitive mechanisms. Na+–K+–2Cl– cotransporter (NKCC1) is involved in the hepatoportal Na+-sensitive mechanism, and NKCC1 expression is reduced if the hepatoportal region is exposed to high Na+ concentrations for a long time. This situation occurs when animals intake a high-sodium chloride diet for a long time. Liver cirrhosis also impairs the Na+-sensitive hepatorenal reflex. Hepatoportal baroreceptor-induced renal sympathetic excitation and the impaired Na+-sensitive hepatorenal reflex may partially explain the Na+ retention in liver cirrhosis.

Collaboration


Dive into the Chikara Abe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Kawada

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Yamagata

Japan Aerospace Exploration Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge