Chin-Tien Wang
Taipei Veterans General Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chin-Tien Wang.
Journal of Virology | 2001
Steve S.-L. Chen; Sheau-Fen Lee; Chin-Tien Wang
ABSTRACT The amphipathic α-helices located in the cytoplasmic tail of the envelope (Env) transmembrane glycoprotein gp41 of human immunodeficiency virus type 1 have been implicated in membrane association and cytopathicity. Deletion of the last 12 amino acids in the C terminus of this domain severely impairs infectivity. However, the nature of the involvement of the cytoplasmic tail in Env-membrane interactions in cells and the molecular basis for the defect in infectivity of this mutant virus are still poorly understood. In this study we examined the interaction of the cytoplasmic tail with membranes in living mammalian cells by expressing a recombinant cytoplasmic tail fragment and an Escherichia coli β-galactosidase/cytoplasmic tail fusion protein, both of them lacking gp120, the gp41 ectodomain, and the transmembrane region. We found through cell fractionation, in vivo membrane flotation, and confocal immunofluorescence studies that the cytoplasmic tail contained determinants to be routed to a perinuclear membrane region in cells. Further mapping showed that each of the three lentivirus lytic peptide (LLP-1, LLP-2, and LLP-3) sequences conferred this cellular membrane-targeting ability. Deletion of the last 12 amino acids from the C terminus abolished the ability of the LLP-1 motif to bind to membranes. High salt extraction, in vitro transcription and translation, and posttranslational membrane binding analyses indicated that the β-galactosidase/LLP fusion proteins were inserted into membranes via the LLP sequences. Subcellular fractionation and confocal microscopy studies revealed that each of the LLP motifs, acting in a position-independent manner, targeted non-endoplasmic reticulum (ER)-associated β-galactosidase and enhanced green fluorescence protein to the ER. Our study provides a basis for the involvement of the gp41 cytoplasmic tail during Env maturation and also supports the notion that the membrane apposition of the C-terminal cytoplasmic tail plays a crucial role in virus-host interaction.
Journal of Virology | 2002
Hsu-Chen Chiu; Szu-Yung Yao; Chin-Tien Wang
ABSTRACT Incorporation of the human immunodeficiency virus type 1 (HIV-1) Gag-Pol into virions is thought to be mediated by the N-terminal Gag domain via interaction with the Gag precursor. However, one recent study has demonstrated that the murine leukemia virus Pol can be incorporated into virions independently of Gag-Pol expression, implying a possible interaction between the Pol and Gag precursor. To test whether the HIV-1 Pol can be incorporated into virions on removal of the N-terminal Gag domain and to define sequences required for the incorporation of Gag-Pol into virions in more detail, a series of HIV Gag-Pol expression plasmids with various extensive deletions in the region upstream of the reverse transcriptase (RT) domain was constructed, and viral incorporation of the Gag-Pol deletion mutants was examined by cotransfecting 293T cells with a plasmid expressing Pr55 gag . Analysis indicated that deletion of the N-terminal two-thirds of the gag coding region did not significantly affect the incorporation of Gag-Pol into virions. In contrast, Gag-Pol proteins with deletions covering the capsid (CA) major homology regions and the adjacent C-terminal CA regions were impaired with respect to assembly into virions. However, Gag-Pol with sequences deleted upstream of the protease, or of the RT domain but retaining 15 N-terminal gag codons, could still be rescued into virions at a level about 20% of the wild-type level. When assayed in a nonmyristylated Gag-Pol context, all of the Gag-Pol deletion mutants were incorporated into virions at a level comparable to their myristylated counterparts, suggesting that the incorporation of the Gag-Pol deletion mutants into virions is independent of the N-terminal myristylation signal.
Virology | 2008
Ching-Yuan Chang; Yu-Fen Chang; Shiu-Mei Wang; Ying-Tzu Tseng; Kuo-Jung Huang; Chin-Tien Wang
Abstract The HIV-1 matrix (MA) protein is similar to nucleocapsid (NC) proteins in its propensity for self-interaction and association with RNA. Here we report on our finding that replacing MA with NC results in the production of wild type (wt)-level RNA and virus-like particles (VLPs). In contrast, constructs containing MA as a substitute for NC are markedly defective in VLP production and form virions with lower densities than wt, even though their RNA content is over 50% that of wt level. We also noted that a ΔMN mutant lacking both MA and NC produces a relatively higher amount of VLPs than those in which MA was substituted for NC. Although ΔMN contains approximately 30% the RNA of wt, it still exhibits virion densities equal (or very similar) to those of wt. The data suggest that neither NC nor RNA are major virion density determinants. Furthermore, we noted that NC(ZIP)—a NC replacement with a leucine zipper dimerization motif—produces VLPs as efficiently as wt. However, the markedly reduced assembly efficiency of NC(ZIP) is associated with the formation of VLPs with densities slightly lower than those of wt following MA removal, suggesting that (a) MA is required to help the inserted leucine zipper motif perform efficient Gag multimerization, and (b) MA plays a role in the virus assembly process.
Journal of Biological Chemistry | 2010
Ying-Tzu Tseng; Shiu-Mei Wang; Kuo-Jung Huang; Amber I-Ru Lee; Chien-Cheng Chiang; Chin-Tien Wang
Coronavirus membrane (M) protein can form virus-like particles (VLPs) when coexpressed with nucleocapsid (N) or envelope (E) proteins, suggesting a pivotal role for M in virion assembly. Here we demonstrate the self-assembly and release of severe acute respiratory syndrome coronavirus (SARS-CoV) M protein in medium in the form of membrane-enveloped vesicles with densities lower than those of VLPs formed by M plus N. Although efficient N-N interactions require the presence of RNA, we found that M-M interactions were RNA-independent. SARS-CoV M was observed in both the Golgi area and plasma membranes of a variety of cells. Blocking M glycosylation does not appear to significantly affect M plasma membrane labeling intensity, M-containing vesicle release, or VLP formation. Results from a genetic analysis indicate involvement of the third transmembrane domain of M in plasma membrane-targeting signal. Fusion proteins containing M amino-terminal 50 residues encompassing the first transmembrane domain were found to be sufficient for membrane binding, multimerization, and Golgi retention. Surprisingly, we found that fusion proteins lacking all three transmembrane domains were still capable of membrane binding, Golgi retention, and interacting with M. The data suggest that multiple SARS-CoV M regions are involved in M self-assembly and subcellular localization.
Virology | 2009
Chien-Cheng Chiang; Shiu-Mei Wang; Ying-Tzu Tseng; Kuo-Jung Huang; Chin-Tien Wang
HIV-1 virus particle processing is mediated by protease (PR), with enzymatic activation triggered by Gag-Pol/Gag-Pol interaction. We previously reported that truncation mutations at the reverse transcriptase (RT) connection subdomain markedly impair virus particle processing, suggesting an important role for the RT subdomain in PR-mediated virus processing. A highly conserved tryptophan (Trp) repeat motif of the HIV-1 RT connection subdomain is involved in RT dimerization. Our goal in this study was to determine whether mutations at the Trp repeat motif have any effect on PR-mediated virus processing. Our results indicate that even though alanine substitutions at W401 (W401A) or at both W401 and W402 (W401A/W402A) have no major effect on steady-state virus processing, the combined W401A/W402A mutations partially negate and the W401A mutation almost completely negates an efavirenz (EFV)-imposed barrier to virus production. The combination of RT instability and poor enzymatic activity reflects a RT dimerization defect incurred by the mutations. We also found that an artificial p66RT carrying the W401A or W401A/W402A mutations was packaged into virions more efficiently than wild-type p66RT, and that the viral incorporation of p66RT is significantly reduced by EFV, implying a novel effect of EFV on RT-Gag interaction. Our results suggest that the Trp repeat motif may play a role in the Gag-Pol/Gag-Pol interaction that contributes to subsequent PR activation.
Journal of Virology | 2010
Chien-Cheng Chiang; Shiu-Mei Wang; Yen-Yu Pan; Kuo-Jung Huang; Chin-Tien Wang
ABSTRACT HIV-1 protease (PR) mediates the proteolytic processing of virus particles during or after virus budding. PR activation is thought to be triggered by appropriate Gag-Pol/Gag-Pol interaction; factors affecting this interaction either enhance or reduce PR-mediated cleavage efficiency, resulting in markedly reduced virion production or the release of inadequately processed virions. We previously showed that a Gag-Pol deletion mutation involving the reverse transcriptase tryptophan (Trp) repeat motif markedly impairs PR-mediated virus maturation and that an alanine substitution at W401 (W401A) or at both W401 and W402 (W401A/W402A) partially or almost completely negates the enhancement effect of efavirenz (a nonnucleoside reverse transcriptase inhibitor) on PR-mediated virus processing efficiency. These data suggest that the Trp repeat motif may contribute to the PR activation process. Here we demonstrate that due to enhanced Gag cleavage efficiency, W402 alanine or leucine substitution significantly reduces virus production. However, W402 replacement with phenylalanine does not significantly affect virus particle assembly or processing, but it does markedly impair viral infectivity in a single-cycle infection assay. Our results demonstrate that a single amino acid substitution at HIV-1 RT can radically affect virus assembly by enhancing Gag cleavage efficiency, suggesting that in addition to contributing to RT biological function during the early stages of virus replication, the HIV-1 RT tryptophan repeat motif in a Gag-Pol context may play an important role in suppressing the premature activation of PR during late-stage virus replication.
Journal of Virology | 2007
Wei-Hao Liao; Kuo-Jung Huang; Yu-Fen Chang; Shiu-Mei Wang; Ying-Tzu Tseng; Chien-Cheng Chiang; Jaang-Jiun Wang; Chin-Tien Wang
ABSTRACT We demonstrate that a genetically engineered human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) composed mainly of p66 or p51 subunits can be incorporated into virus-like particles (VLPs) when coexpressed with HIV-1 Pr55gag. VLP-associated RT exhibited a detergent-resistant association with immature cores during sucrose gradient equilibrium centrifugation, suggesting that RT is incorporated into VLPs. However, RT that retains downstream integrase (IN) is severely inhibited in terms of incorporation into VLPs. Results from immunofluorescence tests reveal that RT-IN is primarily localized at the perinuclear area and exhibits poor colocalization with Gag. IN removal leads to a redistribution of RT throughout the cytoplasm and improved RT incorporation into VLPs. Similar results were observed for RT-IN in which alanine was substituted for 186-Lys-Arg-Lys-188 residues of the IN putative nuclear localization signal, suggesting that IN karyophilic properties may partly account for the inhibitory effect of IN on RT incorporation. Although the membrane-binding capacity of RT was markedly reduced compared to that of wild-type Gag or Gag-Pol, the correlation of membrane-binding ability with particle incorporation efficiency was incomplete. Furthermore, we observed that membrane-binding-defective myristylation-minus RT can be packaged into VLPs at the same level as its normal myristylated counterpart. This suggests that the incorporation of RT into VLPs is independent of membrane affinity but very dependent on RT-Gag interaction. Results from a genetic analysis suggest that the Gag-interacting regions of RT mainly reside in the thumb subdomain and that the RT-binding domains of Gag are located in the matrix (MA) and p6 regions.
PLOS ONE | 2012
Yen-Yu Pan; Shiu-Mei Wang; Kuo-Jung Huang; Chien-Cheng Chiang; Chin-Tien Wang
Natural HIV-1 protease (PR) is homodimeric. Some researchers believe that interactions between HIV-1 Gag-Pol molecules trigger the activation of embedded PR (which mediates Gag and Gag-Pol cleavage), and that Gag-Pol assembly domains outside of PR may contribute to PR activation by influencing PR dimer interaction in a Gag-Pol context. To determine if the enhancement of PR dimer interaction facilitates PR activation, we placed single or tandem repeat leucine zippers (LZ) at the PR C-terminus, and looked for a correlation between enhanced Gag processing efficiency and increased Gag-PR-LZ multimerization capacity. We found significant reductions in virus-like particles (VLPs) produced by HIV-1 mutants, with LZ fused to the end of PR as a result of enhanced Gag cleavage efficiency. Since VLP production can be restored to wt levels following PR activity inhibition, this assembly defect is considered PR activity-dependent. We also found a correlation between the LZ enhancement effect on Gag cleavage and enhanced Gag-PR multimerization. The results suggest that PR dimer interactions facilitated by forced Gag-PR multimerization lead to premature Gag cleavage, likely a result of premature PR activation. Our conclusion is that placement of a heterologous dimerization domain downstream of PR enhances PR-mediated Gag cleavage efficiency, implying that structural conformation, rather than the primary sequence outside of PR, is a major determinant of HIV-1 PR activation.
Virology | 2009
Shui-Mei Wang; Chin-Tien Wang
Abstract We previously reported that replacing HIV-1 nucleocapsid (NC) domain with SARS-CoV nucleocapsid (N) residues 2–213, 215–421, or 234–421 results in efficient virus-like particle (VLP) production at a level comparable to that of wild-type HIV-1. In this study we demonstrate that these chimeras are capable of packaging large amounts of human APOBEC3G (hA3G), and that an HIV-1 Gag chimera containing the carboxyl-terminal half of human coronavirus 229E (HCoV-229E) N as a substitute for NC is capable of directing VLP assembly and efficiently packaging hA3G. When co-expressed with SARS-CoV N and M (membrane) proteins, hA3G was efficiently incorporated into SARS-CoV VLPs. Data from GST pull-down assays suggest that the N sequence involved in N–hA3G interactions is located between residues 86 and 302. Like HIV-1 NC, the SARS-CoV or HCoV-229E N-associated with hA3G depends on the presence of RNA, with the first linker region essential for hA3G packaging into both HIV-1 and SARS-CoV VLPs. The results raise the possibility that hA3G is capable of associating with different species of viral structural proteins through a potentially common, RNA-mediated mechanism.
Virology | 2014
Shiu-Mei Wang; Kuo-Jung Huang; Chin-Tien Wang
Abstract Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments.