Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ching C. Wang is active.

Publication


Featured researches published by Ching C. Wang.


PLOS Pathogens | 2008

snoRNA, a novel precursor of microRNA in Giardia lamblia.

Ashesh A. Saraiya; Ching C. Wang

An Argonaute homolog and a functional Dicer have been identified in the ancient eukaryote Giardia lamblia, which apparently lacks the ability to perform RNA interference (RNAi). The Giardia Argonaute plays an essential role in growth and is capable of binding specifically to the m7G-cap, suggesting a potential involvement in microRNA (miRNA)-mediated translational repression. To test such a possibility, small RNAs were isolated from Giardia trophozoites, cloned, and sequenced. A 26-nucleotide (nt) small RNA (miR2) was identified as a product of Dicer-processed snoRNA GlsR17 and localized to the cytoplasm by fluorescence in situ hybridization, whereas GlsR17 was found primarily in the nucleolus of only one of the two nuclei in Giardia. Three other small RNAs were also identified as products of snoRNAs, suggesting that the latter could be novel precursors of miRNAs in Giardia. Putative miR2 target sites were identified at the 3′-untranslated regions (UTR) of 22 variant surface protein mRNAs using the miRanda program. In vivo expression of Renilla luciferase mRNA containing six identical miR2 target sites in the 3′-UTR was reduced by 40% when co-transfected with synthetic miR2, while the level of luciferase mRNA remained unaffected. Thus, miR2 likely affects translation but not mRNA stability. This repression, however, was not observed when Argonaute was knocked down in Giardia using a ribozyme-antisense RNA. Instead, an enhancement of luciferase expression was observed, suggesting a loss of endogenous miR2-mediated repression when this protein is depleted. Additionally, the level of miR2 was significantly reduced when Dicer was knocked down. In all, the evidence indicates the presence of a snoRNA-derived miRNA-mediated translational repression in Giardia.


Molecular and Biochemical Parasitology | 1986

Discovery of a specific double-stranded RNA virus in Giardia lamblia

Alice L. Wang; Ching C. Wang

Nucleic acid samples purified from trophozoites of Giardia lamblia Portland I strain contain an ethidium-stainable band that comigrates with 7.0 kilobase DNA in agarose gel electrophoresis. The band was degradable by alkali, ribonuclease A and ribonuclease T1, but the susceptibility toward the ribonucleases decreased with increasing ionic strength, suggestive of double-stranded RNA (dsRNA). This identification was confirmed by electron micrographs of the purified samples, which showed linear double-stranded structures with an estimated average length of 1.5 micron. In crude homogenates of G. lamblia, this dsRNA was protected against added ribonuclease A but disappeared upon adding sodium dodecyl sulfate or proteinase K. Differential centrifugations suggested an association of the dsRNA with the nuclear fraction, but it was freed to the 109,000 X g pelletable fraction with increasing homogenization. The dsRNA was purified by CsCl buoyant density gradient centrifugations in a distinct band with a rho value of 1.368 g ml-1. Electron microscopy revealed spherical virus-like particles (VLP) with a diameter of 33 nm. VLP of similar shape and size were also identified in the nuclei of sectioned G. lamblia trophozoites. VLP yield a major protein with an estimated molecular weight of 66,000 in sodium dodecyl sulfate polyacrylamide gel electrophoresis. VLP are abundant in the culture media of stationary-phase G. lamblia Portland I strain and are able to infect the G. lamblia WB strain, which is free of the virus. There is no sequence homology between the dsRNA and the nuclear DNA of G. lamblia and thus no apparent integration of viral genome into host DNA.


Molecular and Biochemical Parasitology | 1997

INHIBITION OF PROTEASOME ACTIVITY BLOCKS CELL CYCLE PROGRESSION AT SPECIFIC PHASE BOUNDARIES IN AFRICAN TRYPANOSOMES

Martha C. Mutomba; Wah-Yuen To; William C. Hyun; Ching C. Wang

Proteasomes are one of the cellular complexes controlling protein degradation from archaebacteria to mammalian cells. We recently purified and characterized the catalytic core of the proteasome, the 20S form, from Trypanosoma brucei, a flagellated protozoa which causes African trypanosomiasis. To identify the role of proteasomes in African trypanosomes, we used lactacystin, a specific inhibitor of proteasome activity. Lactacystin showed potent inhibition of the activity of 20S proteasomes purified from both bloodstream and procyclic (insect) forms of T. brucei (IC50 = 1 microM). It also inhibited proliferation of T. brucei cells in culture assays, with 1 microM inhibiting growth of bloodstream forms, whereas 5 microM was required to block proliferation of procyclic forms. Analysis of the DNA content of these cells by flow cytometry showed that 5 microM lactacystin arrested procyclic cells in the G2 + M phases of the cell cycle. Fluorescence microscopy revealed that most of the cells had one nucleus and one kinetoplast each, indicating that the cells had replicated their DNA, but failed to undergo mitosis. This suggests that transition from G2 to M phase was blocked. On the other hand, incubation of bloodstream forms with 1 microM lactacystin led to arrest of 30-35% of the cell population in G1 and 55-60% of the cells in G2, indicating that both transition from G1 to S and from G2 to M were blocked. These observations were also confirmed by using another inhibitor of proteasome, N-carbobenzoxy-L-leucyl-L-leucyl-L-norvalinal (LLnV), which arrested procyclic forms in G2, and bloodstream forms in both G1 and G2. These results suggest that proteasome activity is essential for driving cell cycle progression in T. brucei, and that proteasomes may control cellular functions differently in bloodstream and procyclic forms of T. brucei.


Eukaryotic Cell | 2006

Dissociation of Cytokinesis Initiation from Mitotic Control in a Eukaryote

Praveen Kumar; Ching C. Wang

ABSTRACT Cytokinesis is initiated only after mitotic exit in eukaryotes. However, in the insect (procyclic) form of an ancient protist, Trypanosoma brucei, a blockade at the G2/M checkpoint results in an enrichment of anucleate cells (zoids), suggesting separated regulations between mitosis and cytokinesis (X. Tu and C. C. Wang, J. Biol. Chem. 279:20519-20528, 2004). Polo-like kinases (Plks) are known to play critical roles in controlling both mitosis and cytokinesis. A single Plk homologue in T. brucei, TbPLK, was found to be capable of complementing the Plk (Cdc5) functions in Saccharomyces cerevisiae, thus raising the question of how it may function in the trypanosome with cytokinesis dissociated from mitosis. Depletion of TbPLK in the procyclic form of T. brucei by RNA interference resulted in growth arrest with accumulation of multiple nuclei, kinetoplasts, basal bodies, and flagella in approximately equal numbers among individual cells. There were, however, few zoids detectable, indicating inhibited cytokinesis with unblocked mitosis and kinetoplast segregation. TbPLK is thus apparently involved only in initiating cytokinesis in T. brucei. Overexpression of TbPLK in the trypanosome did not affect cell growth, but 13% of the resulting population was in the zoid form, suggesting runaway cytokinesis. An immunofluorescence assay indicated that TbPLK was localized in a chain of likely flagellum attachment zones in the cytoskeleton. In a dividing cell, a new line of such zones appeared closely paralleling the existing one, which could constitute the cleavage furrow. An exposed region of TbPLK at the anterior tip of the cell may provide the trigger of cytokinesis. Taken together, our results revealed a novel mechanism of cytokinesis initiation in the trypanosome that may serve as a useful model for further in-depth investigations.


Molecular and Biochemical Parasitology | 1996

Purification and characterization of proteasomes from Trypanosoma brucei

Shao-bing Hua; Wah-Yuen To; Tien T. Nguyen; Mei-Lie Wong; Ching C. Wang

Proteasomes are multisubunit proteases that exist universally among eukaryotes. They have multiple proteolytic activities, and are believed to have important roles in regulating cell cycle, selective intracellular proteolysis, and antigen presentation. To determine the possible role that proteasomes may play in controlling the life cycle of African trypanosomes, we have isolated proteasomes from the bloodstream and the insect (procyclic) forms of Trypanosoma brucei by DEAE-cellulose chromatography and glycerol gradient fractionation in the presence of ATP. No 26 S proteasome homologs was identified in T. brucei under these experimental conditions. The proteasomes isolated from these two forms of T. brucei are very similar to the rat blood cell 20 S proteasome in their general appearance under the electron microscope. The profile of trypanosome proteasome subunits in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has eight visible protein bands with molecular weights ranging from 23 to 34 kDa, and cross-reacted very poorly with the anti-human 20 S proteasome antibodies on immunoblots. Two-dimensional gel electrophoresis of the parasite proteasomes shows a similar number of major subunits with pIs ranging from 4.5 to 7. Using a variety of fluorogenic peptides as substrates, the trypanosome proteasomes exhibited unusually high trypsin-like, but somewhat lower chymotrypsin-like activities, as compared to the rat 20 S proteasome. These proteolytic activities were, however, insensitive to phenylmethylsulfonyl fluoride (PMSF), tosyl-phenylalanine chloromethylketone (TPCK), tosyl-lysine chloromethylketone (TLCK) and trans-epoxy succinyl-L-leucylamido-(4 guanidino) butane (E-64), but the trypsin-like activity of trypanosome proteasomes was inhibited by leupeptin, an aldehyde known to inhibit the trypsin-like activity of mammalian proteasomes, thus ruling out possible contamination by other serine or cysteine proteases. Some quantitative differences in the substrate specificities between the proteasomes from bloodstream and procyclic forms were indicated, which may play a role in determining the differential protein turnovers at two different stages of development of T. brucei.


Molecular Microbiology | 2000

Inhibition of pyruvate‐ferredoxin oxidoreductase gene expression in Giardia lamblia by a virus‐mediated hammerhead ribozyme

Meixia Dan; Alice L. Wang; Ching C. Wang

Giardia lamblia is a primitive eukaryotic microorganism that derives its metabolic energy primarily from anaerobic glycolysis. In trophozoites, pyruvate‐ferredoxin oxidoreductase (PFOR) converts pyruvate to acetyl‐CoA with the transfer of a pair of electrons to ferredoxin, which can then reduce metronidazole and activate it into a potent antigiardiasis agent. It is unclear, however, whether this anaerobic disposal of electrons is essential for the energy metabolism in Giardia. In the present study, cDNAs encoding hammerhead ribozyme flanked with various lengths of antisense PFOR RNA were cloned into a viral vector pC631pac derived from the genome of giardiavirus (GLV). RNA transcripts of the plasmids showed high cleavage activities on PFOR mRNA in vitro. They were introduced into GLV‐infected G. lamblia trophozoites by electroporation and stablized in the transfected cells via serial passages under puromycin selection. PFOR mRNA and enzyme activity in the transfected cells were decreased by 46–60% with the ribozyme PRzS flanked with 20 nt PFOR antisense RNA on each arm and by 69–80% with the ribozyme PRzL flanked with 600 and 1500 nt PFOR antisense RNA. PRzS without the inserted ribozyme or ribozyme flanked with alcohol dehydrogenase E antisense RNA showed no effect on PFOR mRNA and activity. The ribozyme‐transfected cells demonstrated significantly enhanced resistance to metronidazole and grew equally well under anaerobic and aerobic conditions. In contrast, the wild‐type cells grew slightly better anaerobically than the transfectants but did not grow at all in aerobic conditions. Thus, the reduced PFOR expression enables Giardia to grow under molecular oxygen and the presence of PFOR enhances the anaerobic growth of Giardia with an increased susceptibility towards metronidazole. In addition, this study demonstrated for the first time the feasibility of using a viral RNA vector to express a ribozyme targeted at a specific mRNA in G. lamblia to reduce the expression of a specific gene.


Journal of Biological Chemistry | 1999

Structural and Functional Characterizations of the Proteasome-activating Protein PA26 from Trypanosoma brucei

Yi Yao; Lan Huang; Andrew N. Krutchinsky; Mei-Lie Wong; Kenneth G. Standing; Alma L. Burlingame; Ching C. Wang

The activated 20 S proteasome, which has been found only in mammalian cells, is composed of two heptamer rings of an activator protein on each end of the 20 S proteasome and is inducible by interferon-γ. A 20 S proteasome has been recently identified in a protozoan pathogen Trypanosoma brucei, but there has been no experimental evidence yet for the presence of a 26 S proteasome. Instead, an activated form of 20 S proteasome was isolated from this organism, which has significantly enhanced peptidase activities. It consists of an additional activator protein with an estimated molecular mass of 26 kDa (PA26) (To, W. Y., and Wang, C. C. (1997)FEBS Lett. 404, 253–262). The profile and sequences of tryptic peptides from PA26 were determined by mass spectrometry; no matches were found in the data base. The peptide sequences were used in reverse transcriptase-polymerase chain reaction to isolate a full-length cDNA clone encoding PA26. The protein sequence thus derived from it indicates little sequence identity with those of mammalian activator proteins PA28 α, β, or γ. There is only a single copy of PA26 gene in T. brucei. Purified recombinant PA26 polymerizes spontaneously to form heptamer ring with an outer diameter of 8.5 nm. The ring binds and activates 20 S proteasomes from T. brucei as well as rat, whereas human PA28α can neither bind nor activate T. brucei 20 S proteasome. The former is thus apparently more ubiquitous than PA28 in its capability of binding to and activating 20 S proteasomes. Its presence in T. brucei may also suggest a more ancient origin of proteasome activator proteins and a much wider involvement in protein degradation among other eukaryotic organisms than was originally envisaged.


Journal of Biological Chemistry | 2006

An aurora kinase homologue is involved in regulating both mitosis and cytokinesis in Trypanosoma brucei

Xiaoming Tu; Praveen Kumar; Ziyin Li; Ching C. Wang

The chromosomal passenger protein aurora kinases have been implicated in regulating chromosome segregation and cell division. Three aurora kinase homologues were identified (TbAUK1, -2 and -3) in the Trypanosome Genomic Data Base, and their expressions in the procyclic form of Trypanosoma brucei were knocked down individually by using the RNA interference technique. Only a knockdown of TbAUK1 arrested the cells in G2/M phase with each cell showing an extended posterior end, two kinetoplasts, and an enlarged nucleus, apparently the result of an inhibited kinetoplast multiplication and a failed mitosis. There is no mitotic spindle structure in the TbAUK1-depleted cell. The two kinetoplasts moved apart from each other but stopped just before cytokinesis, suggesting that cytokinesis was blocked in its early phase. Overexpression of TbAUK1 in the cells resulted in little change in cell growth. By immunofluorescence, TbAUK1 was primarily localized to the nucleus in interphase and to the mitotic spindle during apparent metaphase and anaphase. Thus, differing from other eukaryotes, TbAUK1 has an apparent triple function in coupling mitosis and kinetoplast replication with cytokinesis in T. brucei. T. brucei polo-like kinase, previously identified as the initiator of cytokinesis without apparent involvement in mitosis in the trypanosome, was either depleted or overexpressed in the TbAUK1-deficient cells. A dominant TbAUK1-depleted phenotype was demonstrated in both cases, suggesting that TbAUK1 plays an essential role in cytokinesis that cannot be affected by changes in the level of T. brucei polo-like kinase. To our knowledge, this is the first time that the function of an aurora B-like kinase is a prerequisite for polo-like kinase action in initiating cytokinesis. TbAUK1 is also the first identified protein that couples both mitosis and kinetoplast replication with cytokinesis in the trypanosome.


Molecular and Biochemical Parasitology | 1987

Purification, characterization, and kinetic analysis of inosine 5′-monophosphate dehydrogenase of Tritrichomonas foetus

Ron Verham; Thomas D. Meek; Lizbeth Hedstrom; Ching C. Wang

The IMP dehydrogenase of Tritrichomonas foetus, a parasitic protozoan incapable of de novo biosynthesis of purine nucleotides, has been purified about 1000-fold to apparent homogeneity. The purified enzyme demonstrated a 20-fold higher substrate turnover rate than the pure IMP dehydrogenase from sarcoma ascites tumor cells. It has a subunit molecular weight of 58,000, aggregates to a size of 380,000 at low ionic strength, and partly dissociates to a molecular weight of 270,000 in high salt concentrations. Unlike the IMP dehydrogenase of bacteria and mammals, the T. foetus enzyme does not require K+ for activity. The analysis of initial velocity and product inhibition data is consistent with a sequential, ordered bi bi kinetic mechanism for the parasite enzyme-catalyzed reaction, in which IMP binds before NAD+ and NADH is released before XMP. This is in contrast to the partially random mechanism of the bacterial enzyme which involves the formation of an enzyme-K+-(IMP) complex. Mycophenolic acid inhibits T. foetus IMP dehydrogenase uncompetitively versus both IMP and NAD+ with an apparent Ki of 9 microM. This value, which is several hundred-fold higher than that for mammalian IMP dehydrogenase, suggests significantly different binding properties of the mycophenolic acid site in T. foetus IMP dehydrogenase, which might be amenable to specific inhibitor design.


PLOS ONE | 2008

Identification of a Novel Chromosomal Passenger Complex and Its Unique Localization during Cytokinesis in Trypanosoma brucei

Ziyin Li; Ju Huck Lee; Feixia Chu; Alma L. Burlingame; Arthur Günzl; Ching C. Wang

Aurora B kinase is a key component of the chromosomal passenger complex (CPC), which regulates chromosome segregation and cytokinesis. An ortholog of Aurora B was characterized in Trypanosoma brucei (TbAUK1), but other conserved components of the complex have not been found. Here we identified four novel TbAUK1 associated proteins by tandem affinity purification and mass spectrometry. Among these four proteins, TbKIN-A and TbKIN-B are novel kinesin homologs, whereas TbCPC1 and TbCPC2 are hypothetical proteins without any sequence similarity to those known CPC components from yeasts and metazoans. RNAi-mediated silencing of each of the four genes led to loss of spindle assembly, chromosome segregation and cytokinesis. TbKIN-A localizes to the mitotic spindle and TbKIN-B to the spindle midzone during mitosis, whereas TbCPC1, TbCPC2 and TbAUK1 display the dynamic localization pattern of a CPC. After mitosis, the CPC disappears from the central spindle and re-localizes at a dorsal mid-point of the mother cell, where the anterior tip of the daughter cell is tethered, to start cell division toward the posterior end, indicating a most unusual CPC-initiated cytokinesis in a eukaryote.

Collaboration


Dive into the Ching C. Wang's collaboration.

Top Co-Authors

Avatar

Alice L. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Ziyin Li

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Coffino

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoming Tu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

De-Chao Yu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge