Ching Hong Tan
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ching Hong Tan.
Nature Communications | 2016
Sarah Holliday; Raja Shahid Ashraf; Andrew Wadsworth; Derya Baran; Syeda Amber Yousaf; Christian B. Nielsen; Ching Hong Tan; Stoichko D. Dimitrov; Zhengrong Shang; Nicola Gasparini; Maha A. Alamoudi; Frédéric Laquai; Christoph J. Brabec; Alberto Salleo; James R. Durrant; Iain McCulloch
Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.
Journal of the American Chemical Society | 2015
Sarah Holliday; Raja Shahid Ashraf; Christian B. Nielsen; Mindaugas Kirkus; Jason A. Röhr; Ching Hong Tan; Elisa Collado-Fregoso; Astrid-Caroline Knall; James R. Durrant; Jenny Nelson; Iain McCulloch
A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.
Nature Communications | 2013
Zhe Li; Him Cheng Wong; Zhenggang Huang; Hongliang Zhong; Ching Hong Tan; Wing Chung Tsoi; Ji-Seon Kim; James R. Durrant; João T. Cabral
A key challenge to the commercialization of organic bulk heterojunction solar cells is the achievement of morphological stability, particularly under thermal stress conditions. Here we show that a low-level light exposure processing step during fabrication of blend polymer:PC60BM solar cells can result in a 10-fold increase in device thermal stability and, under certain conditions, enhanced device performance. The enhanced stability is linked to the light-induced oligomerization of PC60BM that effectively hinders their diffusion and crystallization in the blend. We thus suggest that light processing may be a promising, general and cost-effective strategy to optimize fullerene-based solar cell performance. The low level of light exposure required suggests not only that this may be an easily implementable strategy to enhance performance, but also that light-induced PC60BM oligomerization may have inadvertently influenced previous studies of organic solar cell device behaviour.
ACS Nano | 2014
Him Cheng Wong; Zhe Li; Ching Hong Tan; H Zhong; Zhenggang Huang; Hugo Bronstein; Iain McCulloch; João T. Cabral; Durrant
We report a general light processing strategy for organic solar cells (OSC) that exploits the propensity of the fullerene derivative PC60BM to photo-oligomerize, which is capable of both stabilizing the polymer:PC60BM active layer morphology and enhancing the device stability under thermal annealing. The observations hold for blends of PC60BM with an array of benchmark donor polymer systems, including P3HT, DPP-TT-T, PTB7, and PCDTBT. The morphology and kinetics of the thermally induced PC60BM crystallization within the blend films are investigated as a function of substrate and temperature. PC60BM nucleation rates on SiOx substrates exhibit a pronounced peak profile with temperature, whose maximum is polymer and blend-composition dependent. Modest illumination (<10 mW/cm(2)) significantly suppresses nucleation, which is quantified as function of dose, but does not affect crystalline shape or growth, in the micrometer range. On PEDOT:PSS substrates, thermally induced PC60BM aggregation is observed on smaller (≈ 100 nm) length scales, depending upon donor polymer, and also suppressed by light exposure. The concurrent thermal dissociation process of PC60BM oligomers in blend films is also investigated and the activation energy of the fullerene-fullerene bond is estimated to be 0.96 ± 0.04 eV. Following light processing, the thermal stability, and thus lifetime, of PCDTBT:PC60BM devices increases for annealing times up to 150 h. In contrast, PCDTBT:PC70BM OSCs are found to be largely light insensitive. The results are rationalized in terms of the suppression of PC60BM micro- and nanoscopic crystallization processes upon thermal annealing caused by photoinduced PC60BM oligomerization.
Angewandte Chemie | 2014
Bob C. Schroeder; Zhe Li; Michael A. Brady; Gregório C. Faria; Raja Shahid Ashraf; Christopher J. Takacs; John S. Cowart; Duc T. Duong; Kar Ho Chiu; Ching Hong Tan; João T. Cabral; Alberto Salleo; Michael L. Chabinyc; James R. Durrant; Iain McCulloch
Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported. The addition of only 20 % of this novel fullerene not only leads to improved device efficiencies, but more importantly also to a dramatic increase in morphological stability under simulated operating conditions. Dynamic secondary ion mass spectrometry (DSIMS) and TEM are used, amongst other techniques, to elucidate the origins of the improved morphological stability.
Scientific Reports | 2015
Zhe Li; Kar Ho Chiu; Raja Shahid Ashraf; Sarah Fearn; Rajeev Dattani; Him Cheng Wong; Ching Hong Tan; Jiaying Wu; João T. Cabral; James R. Durrant
Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.
Journal of Materials Chemistry C | 2015
Ching Hong Tan; Him Cheng Wong; Zhe Li; David G. Bucknall; James R. Durrant; João T. Cabral
We demonstrate that organic solar cells can exhibit different morphological and performance stability under thermal stress depending upon the processing technique employed, without compromising initial device efficiency. In particular, we investigate benchmark PCDTBT:PC60BM solar cells fabricated by wire bar coating (a technique attractive for commercial manufacture) and the more widely employed, lab scale, technique of spin coating. For this system, wire bar deposition results in superior device stability, with lifetime improvements in excess of 20-fold compared to spun cast devices. Neutron reflectivity reveals that the enhanced PC60BM segregation to the top interface in the slower, wire bar, casting process is likely responsible for the hindered PC60BM nucleation at tens of nm length scale, characterized by atomic force microscopy (AFM), and thus enhanced morphological stability. Modest light exposure of the active layer (at approximately 10 mW cm−2), known to reversibly photo-oligomerize fullerenes and thus impart morphological stability, is found to further improve device stability by a factor of 10. The combined effects of wire bar coating and light processing are highly synergetic, resulting in solar cells which are overall 200 times more stable than devices prepared by spin casting without light processing.
Chemical Communications | 2018
Ching Hong Tan; Jeffrey Gorman; Andrew Wadsworth; Sarah Holliday; Selvam Subramaniyan; Samson A. Jenekhe; Derya Baran; Iain McCulloch; James R. Durrant
We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.
Nature Communications | 2018
Derya Baran; Nicola Gasparini; Andrew Wadsworth; Ching Hong Tan; Nimer Wehbe; Xin Song; Zeinab Hamid; Weimin Zhang; Marios Neophytou; Thomas Kirchartz; Christoph J. Brabec; James R. Durrant; Iain McCulloch
Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm−2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.The nonfullerene-based small molecules start to attract more attention for solar cell research than the fullerene acceptors due to their wider tunability. Here Baran et al. demonstrate nonfullerene-based solar cells with high power conversion efficiency of 12% and quantum efficiencies approaching 100%.
ACS Applied Materials & Interfaces | 2017
Emily M. Speller; James D. McGettrick; Beth Rice; Andrew M. Telford; Harrison Ka Hin Lee; Ching Hong Tan; Catherine S. de Castro; Matthew L. Davies; Trystan Watson; Jenny Nelson; James R. Durrant; Zhe Li; Wing Chung Tsoi
The photochemistry and stability of fullerene films is found to be strongly dependent upon film nanomorphology. In particular, PC61BM blend films, dispersed with polystyrene, are found to be more susceptible to photobleaching in air than the more aggregated neat films. This enhanced photobleaching correlated with increased oxygen quenching of PC61BM triplet states and the appearance of a carbonyl FTIR absorption band indicative of fullerene oxidation, suggesting PC61BM photo-oxidation is primarily due to triplet-mediated singlet oxygen generation. PC61BM films were observed to undergo photo-oxidation in air for even modest (≤40 min) irradiation times, degrading electron mobility substantially, indicative of electron trap formation. This conclusion is supported by observation of red shifts in photo- and electro-luminescence with photo-oxidation, shown to be in agreement with time-dependent density functional theory calculations of defect generation. These results provide important implications on the environmental stability of PC61BM-based films and devices.