Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raja Shahid Ashraf is active.

Publication


Featured researches published by Raja Shahid Ashraf.


Journal of the American Chemical Society | 2011

Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices

Hugo Bronstein; Zhuoying Chen; Raja Shahid Ashraf; Weimin Zhang; Junping Du; James R. Durrant; Pabitra Shakya Tuladhar; Kigook Song; Scott E. Watkins; Yves Geerts; Mm Martijn Wienk; René A. J. Janssen; Thomas D. Anthopoulos; Henning Sirringhaus; Martin Heeney; Iain McCulloch

We report the synthesis and polymerization of a novel thieno[3,2-b]thiophene-diketopyrrolopyrrole-based monomer. Copolymerization with thiophene afforded a polymer with a maximum hole mobility of 1.95 cm(2) V(-1) s(-1), which is the highest mobility from a polymer-based OFET reported to date. Bulk-heterojunction solar cells comprising this polymer and PC(71)BM gave a power conversion efficiency of 5.4%.


Advanced Materials | 2012

High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities.

Zhuoying Chen; Mi Jung Lee; Raja Shahid Ashraf; Yun Gu; Sebastian Albert-Seifried; Martin Meedom Nielsen; Bob C. Schroeder; Thomas D. Anthopoulos; Martin Heeney; Iain McCulloch; Henning Sirringhaus

Ambipolar OFETs with balanced hole and electron field-effect mobilities both exceeding 1 cm(2) V(-1) s(-1) are achieved based on a single-solution-processed conjugated polymer, DPPT-TT, upon careful optimization of the device architecture, charge injection, and polymer processing. Such high-performance OFETs are promising for applications in ambipolar devices and integrated circuits, as well as model systems for fundamental studies.


Nature Communications | 2016

High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

Sarah Holliday; Raja Shahid Ashraf; Andrew Wadsworth; Derya Baran; Syeda Amber Yousaf; Christian B. Nielsen; Ching Hong Tan; Stoichko D. Dimitrov; Zhengrong Shang; Nicola Gasparini; Maha A. Alamoudi; Frédéric Laquai; Christoph J. Brabec; Alberto Salleo; James R. Durrant; Iain McCulloch

Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.


Journal of the American Chemical Society | 2011

Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains

Xinran Zhang; Lee J. Richter; Dean M. DeLongchamp; R. Joseph Kline; Matthew R. Hammond; Iain McCulloch; Martin Heeney; Raja Shahid Ashraf; Jeremy Smith; Thomas D. Anthopoulos; Bob C. Schroeder; Yves Geerts; Daniel A. Fischer; Michael F. Toney

We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packing and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.


Nature Materials | 2017

Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

Derya Baran; Raja Shahid Ashraf; David Hanifi; Maged Abdelsamie; Nicola Gasparini; Jason A. Röhr; Sarah Holliday; Andrew Wadsworth; Sarah Lockett; Marios Neophytou; Christopher J.M. Emmott; Jenny Nelson; Christoph J. Brabec; Aram Amassian; Alberto Salleo; Thomas Kirchartz; James R. Durrant; Iain McCulloch

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.


Journal of the American Chemical Society | 2015

A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics

Sarah Holliday; Raja Shahid Ashraf; Christian B. Nielsen; Mindaugas Kirkus; Jason A. Röhr; Ching Hong Tan; Elisa Collado-Fregoso; Astrid-Caroline Knall; James R. Durrant; Jenny Nelson; Iain McCulloch

A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.


Journal of the American Chemical Society | 2013

Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation.

Iain Meager; Raja Shahid Ashraf; Sonya Mollinger; Bob C. Schroeder; Hugo Bronstein; Daniel Beatrup; Michelle S. Vezie; Thomas Kirchartz; Alberto Salleo; Jenny Nelson; Iain McCulloch

Systematically moving the alkyl-chain branching position away from the polymer backbone afforded two new thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTT-T) polymers. When used as donor materials in polymer:fullerene solar cells, efficiencies exceeding 7% were achieved without the use of processing additives. The effect of the position of the alkyl-chain branching point on the thin-film morphology was investigated using X-ray scattering techniques and the effects on the photovoltaic and charge-transport properties were also studied. For both solar cell and transistor devices, moving the branching point further from the backbone was beneficial. This is the first time that this effect has been shown to improve solar cell performance. Strong evidence is presented for changes in microstructure across the series, which is most likely the cause for the photocurrent enhancement.


Journal of the American Chemical Society | 2015

Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells.

Raja Shahid Ashraf; Iain Meager; Mark Nikolka; Mindaugas Kirkus; Miquel Planells; Bob C. Schroeder; Sarah Holliday; Michael Hurhangee; Christian B. Nielsen; Henning Sirringhaus; Iain McCulloch

The design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm(2)/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm(-2) was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells.


Accounts of Chemical Research | 2012

Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells

Iain McCulloch; Raja Shahid Ashraf; Laure Biniek; Hugo Bronstein; Craig Combe; Jenny E. Donaghey; David Ian James; Christian B. Nielsen; Bob C. Schroeder; Weimin Zhang

The prospect of using low cost, high throughput material deposition processes to fabricate organic circuitry and solar cells continues to drive research towards improving the performance of the semiconducting materials utilized in these devices. Conjugated aromatic polymers have emerged as a leading candidate semiconductor material class, due to their combination of their amenability to processing and reasonable electrical and optical performance. Challenges remain, however, to further improve the charge carrier mobility of the polymers for transistor applications and the power conversion efficiency for solar cells. This optimization requires a clear understanding of the relationship between molecular structure and both electronic properties and thin film morphology. In this Account, we describe an optimization process for a series of semiconducting polymers based on an electron rich indacenodithiophene aromatic backbone skeleton. We demonstrate the effect of bridging atoms, alkyl chain functionalization, and co-repeating units on the morphology, molecular orbital energy levels, charge carrier mobility, and solar cell efficiencies. This conjugated unit is extremely versatile with a coplanar aromatic ring structure, and the electron density can be manipulated by the choice of bridging group between the rings. The functionality of the bridging group also plays an important role in the polymer solubility, and out of plane aliphatic chains present in both the carbon and silicon bridge promote solubility. This particular polymer conformation, however, typically suppresses long range organization and crystallinity, which had been shown to strongly influence charge transport. In many cases, polymers exhibited both high solubility and excellent charge transport properties, even where there was no observable evidence of polymer crystallinity. The optical bandgap of the polymers can be tuned by the combination of the donating power of the bridging unit and the electron withdrawing nature of co-repeat units, alternating along the polymer backbone. Using strong donors and acceptors, we could shift the absorption into the near infrared.


Chemical Communications | 2012

A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors

Raja Shahid Ashraf; Auke J. Kronemeijer; David Ian James; Henning Sirringhaus; Iain McCulloch

A novel thiophene substituted isoindigo and its copolymer with benzothiadiazole have been synthesized. The polymer with low lying LUMO energy levels exhibits excellent ambipolar behavior in field effect transistors with both hole and electron mobilities recorded over 0.1 cm(2) V(-1) s(-1).

Collaboration


Dive into the Raja Shahid Ashraf's collaboration.

Top Co-Authors

Avatar

Iain McCulloch

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Anthopoulos

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian B. Nielsen

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weimin Zhang

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Scott E. Watkins

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge