Ching-Hsien Chen
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ching-Hsien Chen.
American Journal of Respiratory Cell and Molecular Biology | 2013
Philip Thai; Sarah Statt; Ching-Hsien Chen; Ellen Liang; Caitlin Campbell; Reen Wu
The incidence of lung diseases and cancer caused by cigarette smoke is increasing. The molecular mechanisms of gene regulation induced by cigarette smoke that ultimately lead to cancer remain unclear. This report describes a novel long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) both in vitro and in vivo and is elevated in numerous lung cancer cell lines. We have termed this lncRNA the smoke and cancer-associated lncRNA-1 (SCAL1). This lncRNA is located in chromosome 5, and initial sequencing analysis reveals a transcript with four exons and three introns. The expression of SCAL1 is regulated transcriptionally by nuclear factor erythroid 2-related factor (NRF2), as determined by the small, interfering RNA (siRNA) knockdown of NRF2 and kelch-like ECH-associated protein 1 (KEAP1). A nuclear factor erythroid-derived 2 (NF-E2) motif was identified in the promoter region that shows binding to NRF2 after its activation. Functionally, the siRNA knockdown of SCAL1 in human bronchial epithelial cells shows a significant potentiation of cytotoxicity induced by CSE in vitro. Altogether, these results identify a novel and intriguing new noncoding RNA that may act downstream of NRF2 to regulate gene expression and mediate oxidative stress protection in airway epithelial cells.
Molecular Cancer Therapeutics | 2008
Chen-Yu Lee; Hui-Fang Sher; Huei-Wen Chen; Chun-Chi Liu; Ching-Hsien Chen; Choun-Sea Lin; Pan-Chyr Yang; Hsin-Sheng Tsay; Jeremy J.W. Chen
Tanshinones are the major bioactive compounds of Salvia miltiorrhiza Bunge (Danshen) roots, which are used in many therapeutic remedies in Chinese traditional medicine. We investigated the anticancer effects of tanshinones on the highly invasive human lung adenocarcinoma cell line, CL1-5. Tanshinone I significantly inhibited migration, invasion, and gelatinase activity in macrophage-conditioned medium-stimulated CL1-5 cells in vitro and also reduced the tumorigenesis and metastasis in CL1-5-bearing severe combined immunodeficient mice. Unlike tanshinone IIA, which induces cell apoptosis, tanshinone I did not have direct cytotoxicity. Real-time quantitative PCR, luciferase reporter assay, and electrophoretic mobility shift assay revealed that tanshinone I reduces the transcriptional activity of interleukin-8, the angiogenic factor involved in cancer metastasis, by attenuating the DNA-binding activity of activator protein-1 and nuclear factor-κB in conditioned medium-stimulated CL1-5 cells. Microarray and pathway analysis of tumor-related genes identified the differentially expressed genes responding to tanshinone I, which may be associated with the Ras-mitogen-activated protein kinase and Rac1 signaling pathways. These results suggest that tanshinone I exhibits anticancer effects both in vitro and in vivo and that these effects are mediated at least partly through the interleukin-8, Ras-mitogen-activated protein kinase, and Rac1 signaling pathways. Although tanshinone I has a remarkable anticancer action, its potential anticoagulant effect should be noted and evaluated. [Mol Cancer Ther 2008;7(11):3527–38]
BMC Microbiology | 2011
Yi-Chun Lin; Min-Chi Lu; Hui-Ling Tang; Hsu-Chung Liu; Ching-Hsien Chen; Keh-Sen Liu; C.-L. Lin; Chien-Shun Chiou; Ming-Ko Chiang; Chuan-Mu Chen; Yi-Chyi Lai
BackgroundKlebsiella pneumoniae displaying the hypermucoviscosity (HV) phenotype are considered more virulent than HV-negative strains. Nevertheless, the emergence of tissue-abscesses-associated HV-negative isolates motivated us to re-evaluate the role of HV-phenotype.ResultsInstead of genetically manipulating the HV-phenotype of K. pneumoniae, we selected two clinically isolated K1 strains, 1112 (HV-positive) and 1084 (HV-negative), to avoid possible interference from defects in the capsule. These well-encapsulated strains with similar genetic backgrounds were used for comparative analysis of bacterial virulence in a pneumoniae or a liver abscess model generated in either naïve or diabetic mice. In the pneumonia model, the HV-positive strain 1112 proliferated to higher loads in the lungs and blood of naïve mice, but was less prone to disseminate into the blood of diabetic mice compared to the HV-negative strain 1084. In the liver abscess model, 1084 was as potent as 1112 in inducing liver abscesses in both the naïve and diabetic mice. The 1084-infected diabetic mice were more inclined to develop bacteremia and had a higher mortality rate than those infected by 1112. A mini-Tn5 mutant of 1112, isolated due to its loss of HV-phenotype, was avirulent to mice.ConclusionThese results indicate that the HV-phenotype is required for the virulence of the clinically isolated HV-positive strain 1112. The superior ability of the HV-negative stain 1084 over 1112 to cause bacteremia in diabetic mice suggests that factors other than the HV phenotype were required for the systemic dissemination of K. pneumoniae in an immunocompromised setting.
Molecular Cancer Research | 2012
Ching-Hsien Chen; Show-Mei Chuang; Meng-Fang Yang; Jiunn-Wang Liao; Sung-Liang Yu; Jeremy J.W. Chen
YWHAZ, also known as 14-3-3zeta, has been reportedly elevated in many human tumors, including non–small cell lung carcinoma (NSCLC) but little is known about its specific contribution to lung cancer malignancy. Through a combined array-based comparative genomic hybridization and expression microarray analysis, we identified YWHAZ as a potential metastasis enhancer in lung cancer. Ectopic expression of YWHAZ on low invasive cancer cells showed enhanced cell invasion, migration in vitro, and both the tumorigenic and metastatic potentials in vivo. Gene array analysis has indicated these changes associated with an elevation of pathways relevant to epithelial–mesenchymal transition (EMT), with an increase of cell protrusions and branchings. Conversely, knockdown of YWHAZ levels with siRNA or short hairpin RNA (shRNA) in invasive cancer cells led to a reversal of EMT. We observed that high levels of YWHAZ protein are capable of activating β-catenin–mediated transcription by facilitating the accumulation of β-catenin in cytosol and nucleus. Coimmunoprecipitation assays showed a decrease of ubiquitinated β-catenin in presence of the interaction between YWHAZ and β-catenin. This interaction resulted in disassociating β-catenin from the binding of β-TrCP leading to increase β-catenin stability. Using enforced expression of dominant-negative and -positive β-catenin mutants, we confirmed that S552 phosphorylation of β-catenin increases the β-catenin/YWHAZ complex formation, which is important in promoting cell invasiveness and the suppression of ubiquitnated β-catenin. This is the first demonstration showing YWHAZ through its complex with β-catenin in mediating lung cancer malignancy and β-catenin protein stability. Mol Cancer Res; 10(10); 1319–31. ©2012 AACR.
Oncogene | 2014
Ching-Hsien Chen; Phillip Thai; Yoneda K; Kenneth B. Adler; Pan-Chyr Yang; Reen Wu
Myristoylated Alanine-Rich C Kinase Substrate (MARCKS), a substrate of protein kinase C, is a key regulatory molecule controlling mucus granule secretion by airway epithelial cells as well as directed migration of leukocytes, stem cells and fibroblasts. Phosphorylation of MARKCS may be involved in these responses. However, the functionality of MARCKS and its related phosphorylation in lung cancer malignancy have not been characterized. This study demonstrated elevated levels of MARCKS and phospho-MARCKS in highly invasive lung cancer cell lines and lung cancer specimens from non-small-cell lung cancer patients. siRNA knockdown of MARCKS expression in these highly invasive lung cancer cell lines reduced cell migration and suppressed PI3K (phosphatidylinositol 3′-kinase)/Akt phosphorylation and Slug level. Interestingly, treatment with a peptide identical to the MARCKS N-terminus sequence (the MANS peptide) impaired cell migration in vitro and also the metastatic potential of invasive lung cancer cells in vivo. Mechanistically, MANS peptide treatment resulted in a coordination of increase of E-cadherin expression, suppression of MARCKS phosphorylation and AKT/Slug signalling pathway but not the expression of total MARCKS. These results indicate a crucial role for MARCKS, specifically its phosphorylated form, in potentiating lung cancer cell migration/metastasis and suggest a potential use of MARCKS-related peptides in the treatment of lung cancer metastasis.
Molecular Cancer Therapeutics | 2016
Omran Abu Aboud; Ching-Hsien Chen; William Senapedis; Erkan Baloglu; Christian Argueta; Robert H. Weiss
Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and one of the relatively few whose incidence is increasing. Because of the near universal resistance which occurs with the use of current treatment regimens, reprogrammed metabolic pathways are being investigated as potential targets for novel therapies of this disease. Borrowing from studies on other malignancies, we have identified the PAK4 and NAD biosynthetic pathways as being essential for RCC growth. We now show, using the dual PAK4/NAMPT inhibitor KPT-9274, that interference with these signaling pathways results in reduction of G2–M transit as well as induction of apoptosis and decrease in cell invasion and migration in several human RCC cell lines. Mechanistic studies demonstrate that inhibition of the PAK4 pathway by KPT-9274 attenuates nuclear β-catenin as well as the Wnt/β-catenin targets cyclin D1 and c-Myc. Furthermore, NAPRT1 downregulation, which we show occurs in all RCC cell lines tested, makes this tumor highly dependent on NAMPT for its NAD requirements, such that inhibition of NAMPT by KPT-9274 leads to decreased survival of these rapidly proliferating cells. When KPT-9274 was administered in vivo to a 786-O (VHL-mut) human RCC xenograft model, there was dose-dependent inhibition of tumor growth with no apparent toxicity; KPT-9274 demonstrated the expected on-target effects in this mouse model. KPT-9274 is being evaluated in a phase I human clinical trial in solid tumors and lymphomas, which will allow this data to be rapidly translated into the clinic for the treatment of RCC. Mol Cancer Ther; 15(9); 2119–29. ©2016 AACR.
Journal of Dental Research | 2013
M. Morgan-Bathke; H.H. Lin; A.M. Chibly; W. Zhang; X. Sun; Ching-Hsien Chen; Per Flodby; Zea Borok; Reen Wu; D. Arnett; Rob R. Klein; David K. Ann; Kirsten H. Limesand
Autophagy is a catabolic pathway utilized to maintain a balance among the synthesis, degradation, and recycling of cellular components, thereby playing a role in cell growth, development, and homeostasis. Previous studies revealed that a conditional knockout of essential member(s) of autophagy in a variety of tissues causes changes in structure and function of these tissues. Acinar cell-specific expression of knocked-in Cre recombinase through control of aquaporin 5 (Aqp5) promoter/enhancer (Aqp5-Cre) allows us to specifically inactivate Atg5, a protein necessary for autophagy, in salivary acinar cells of Atg5f/f;Aqp5-Cre mice. There was no difference in apoptotic or proliferation levels in salivary glands of Atg5/Cre mice from each genotype. However, H&E staining and electron microscopy studies revealed modestly enlarged acinar cells and accumulated secretory granules in salivary glands of Atg5f/f;Aqp5-Cre mice. Salivary flow rates and amylase contents of Atg5/Cre mice indicated that acinar-specific inactivation of ATG5 did not alter carbachol-evoked saliva and amylase secretion. Conversely, autophagy intersected with salivary morphological and secretory manifestations induced by isoproterenol administration. These results identified a role for autophagy as a homeostasis control in salivary glands. Collectively, Atg5f/f;Aqp5-Cre mice would be a useful tool to enhance our understanding of autophagy in adaptive responses following targeted head and neck radiation or Sjögren syndrome.
American Journal of Respiratory and Critical Care Medicine | 2014
Ching-Hsien Chen; Sarah Statt; Chun Lung Chiu; Philip Thai; Muhammad Arif; Kenneth B. Adler; Reen Wu
RATIONALE Phosphorylation of myristoylated alanine-rich C kinase substrate (phospho-MARCKS) at the phosphorylation site domain (PSD) is crucial for mucus granule secretion and cell motility, but little is known concerning its function in lung cancer. OBJECTIVES We aimed to determine if MARCKS PSD activity can serve as a therapeutic target and to elucidate the molecular basis of this potential. METHODS The clinical relevance of phospho-MARCKS was first confirmed. Next, we used genetic approaches to verify the functionality and molecular mechanism of phospho-MARCKS. Finally, cancer cells were pharmacologically inhibited for MARCKS activity and subjected to functional bioassays. MEASUREMENTS AND MAIN RESULTS We demonstrated that higher phospho-MARCKS levels were correlated with shorter overall survival of lung cancer patients. Using shRNA silencing and ectopic expression of wild-type and PSD-mutated (S159/163A) MARCKS, we showed that elevated phospho-MARCKS promoted cancer growth and erlotinib resistance. Further studies demonstrated an interaction of phosphoinositide 3-kinase with MARCKS, but not with phospho-MARCKS. Interestingly, phospho-MARCKS acted in parallel with increased phosphatidylinositol (3,4,5)-triphosphate pools and AKT activation in cells. Through treatment with a 25-mer peptide targeting the MARCKS PSD motif (MPS peptide), we were able to suppress tumor growth and metastasis in vivo, and reduced levels of phospho-MARCKS, phosphatidylinositol (3,4,5)-triphosphate, and AKT activity. This peptide also enhanced the sensitivity of lung cancer cells to erlotinib treatment, especially those with sustained activation of phosphoinositide 3-kinase/AKT signaling. CONCLUSIONS These results suggest a key role for MARCKS PSD in cancer disease and provide a unique strategy for inhibiting the activity of MARCKS PSD as a treatment for lung cancer.
American Journal of Respiratory and Critical Care Medicine | 2014
Chun-Chieh Chen; Hsuan-Yu Chen; Kang-Yi Su; Qi-Sheng Hong; Bo-Shiun Yan; Ching-Hsien Chen; Szu-Hua Pan; Yih-Leong Chang; Chia‐Jen Wang; Pei‐Fang Hung; Shinsheng Yuan; Gee-Chen Chang; Jeremy J.W. Chen; Pan-Chyr Yang; Ya-Chien Yang; Sung-Liang Yu
RATIONALE Despite advances in treatment and prognosis of non-small cell lung cancer (NSCLC), patient outcomes are still unsatisfactory. OBJECTIVES To reduce the morbidity and mortality of patients with NSCLC, a more comprehensive understanding of mechanisms involved in cancer progression is urgently needed. METHODS By comparison of gene expression profiles in the cell line pair with differential invasion ability, CL1-0 and CL1-5, we found that Shisa3 was highly expressed in the low invasive cells. The effect of Shisa3 on invasion, migration, proliferation, apoptosis, epithelial-mesenchymal transition, and anchorage-independent growth activities in vitro and on tumor growth and metastasis in mice models were examined. The underlying mechanism of Shisa3 was explored by microarray and pathway analysis. Finally, the correlation of Shisa3 expression and clinical outcome was also calculated. MEASUREMENTS AND MAIN RESULTS We identified Shisa3 as a novel tumor suppressor, which induces β-catenin degradation resulting in suppression of tumorigenesis and invasion in vitro. Shisa3 decreased the tumor growth in mice with subcutaneous implantation and reduced the number of metastatic nodules in mice with tail vein injection and orthotopic implantation. Shisa3 performs the tumor suppression activity through WNT signaling predicted by microarray analysis. Our data found that Shisa3 accelerates β-catenin degradation and was positively associated with overall survival and progression-free survival of NSCLC. CONCLUSIONS Our results reveal that Shisa3 acts as a tumor suppressor by acceleration of β-catenin degradation and provide new insight for cancer prognosis and therapy.
Oncotarget | 2016
Josephine F. Trott; Jeffrey Kim; Omran Abu Aboud; Hiromi I. Wettersten; Benjamin J. Stewart; Grace E. Berryhill; Francisco A. Uzal; Russell C. Hovey; Ching-Hsien Chen; Katie L. Anderson; Ashley J. Graef; Aaron L. Sarver; Jaime F. Modiano; Robert H. Weiss
Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC.