Ching-Hua Lu
Queen Mary University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ching-Hua Lu.
Neurology | 2015
Ching-Hua Lu; Corrie Macdonald-Wallis; Elizabeth Gray; Neil Pearce; Axel Petzold; Niklas Norgren; Gavin Giovannoni; Pietro Fratta; Katie Sidle; Mark Fish; Richard W. Orrell; Robin Howard; Kevin Talbot; Linda Greensmith; Jens Kuhle; Martin Turner; Andrea Malaspina
Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p < 0.0001). Blood NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p < 0.001). Conclusion: Blood-derived NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls.
Pharmacology & Therapeutics | 2014
Bernadett Kalmar; Ching-Hua Lu; Linda Greensmith
Arimoclomol is a hydroxylamine derivative, a group of compounds which have unique properties as co-inducers of heat shock protein expression, but only under conditions of cellular stress. Arimoclomol has been found to be neuroprotective in a number of neurodegenerative disease models, including Amyotrophic Lateral Sclerosis (ALS), and in mutant Superoxide Dismutase 1 (SOD1) mice that model ALS, Arimoclomol rescues motor neurons, improves neuromuscular function and extends lifespan. The therapeutic potential of Arimoclomol is currently under investigation in a Phase II clinical trial for ALS patients with SOD1 mutations. In this review we summarize the evidence for the neuroprotective effects of enhanced heat shock protein expression by Arimoclomol and other inducers of the Heat Shock Response. ALS is a complex, multifactorial disease affecting a number of cell types and intracellular pathways. Cells and pathways affected by ALS pathology and which may be targeted by a heat shock protein-based therapy are also discussed in this review. For example, protein aggregation is a characteristic pathological feature of neurodegenerative diseases including ALS. Enhanced heat shock protein expression not only affects protein aggregation directly, but can also lead to more effective clearance of protein aggregates via the unfolded protein response, the proteasome-ubiquitin system or by autophagy. However, compounds such as Arimoclomol have effects beyond targeting protein mis-handling and can also affect additional pathological mechanisms such as oxidative stress. Therefore, by targeting multiple pathological mechanisms, compounds such as Arimoclomol may be particularly effective in the development of a disease-modifying therapy for ALS and other neurodegenerative disorders.
Journal of Neurology, Neurosurgery, and Psychiatry | 2015
Jens Kuhle; Gaiottino J; David Leppert; Axel Petzold; Jonathan P. Bestwick; Andrea Malaspina; Ching-Hua Lu; Ruth Dobson; Giulio Disanto; Niklas Norgren; Ahuva Nissim; L. Kappos; Hurlbert J; Yong Vw; Gavin Giovannoni; Casha S
Background Neurofilaments (Nf) are major structural proteins that occur exclusively in neurons. In spinal cord injury (SCI), the severity of disease is quantified by clinical measures that have limited sensitivity and reliability, and no blood-based biomarker has been established to further stratify the degree of injury. We aimed to examine a serum-based NfL immunoassay as predictor of the clinical outcome in SCI. Methods Longitudinal measurement of serum NfL was performed in patients with central cord syndrome (CCS, n=4), motor-incomplete SCI (iSCI, n=10), motor-complete SCI (cSCI, n=13) and healthy controls (HC, n=67), and correlated with clinical severity, neurological outcome, and neuroprotective effect of the drug minocycline. Results Baseline NfL levels were higher in iSCI (21 pg/mL) and cSCI (70 pg/mL) than in HC (5 pg/mL, p=0.006 and p<0.001) and CCS (6 pg/mL, p=0.025 and p=0.010). Levels increased over time (p<0.001) and remained higher in cSCI versus iSCI (p=0.011) and than in CCS (p<0.001). NfL levels correlated with American Spinal Injury Association (ASIA) motor score at baseline (r=−0.53, p=0.004) and after 24 h (r=−0.69, p<0.001) and 3–12-month motor outcome (baseline NfL: r=−0.43, p=0.026 and 24 h NfL: r=−0.72, p<0.001). Minocycline treatment showed decreased NfL levels in the subgroup of cSCI patients. Conclusions Serum NfL concentrations in SCI patients show a close correlation with acute severity and neurological outcome. Our data provide evidence that serum NfL is of prognostic value in SCI patients for the first time. Further, blood NfL levels may qualify as drug response markers in SCI.
Neurobiology of Aging | 2015
Pietro Fratta; James M. Polke; Jia Newcombe; Sarah Mizielinska; Tammaryn Lashley; Mark Poulter; Jon Beck; Elisavet Preza; Anny Devoy; Katie Sidle; Robin Howard; Andrea Malaspina; Richard W. Orrell; J Clarke; Ching-Hua Lu; Kin Mok; Toby Collins; Maryam Shoaii; Tina Nanji; Selina Wray; Gary Adamson; Alan Pittman; Alan E. Renton; Bryan J. Traynor; Mary G. Sweeney; Tamas Revesz; Henry Houlden; Simon Mead; Adrian M. Isaacs; Elizabeth M. C. Fisher
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Although 0–30 hexanucleotide repeats are present in the general population, expansions >500 repeats are associated with C9ALS/FTD. Large C9ALS/FTD expansions share a common haplotype and whether these expansions derive from a single founder or occur more frequently on a predisposing haplotype is yet to be determined and is relevant to disease pathomechanisms. Furthermore, although cases carrying 50–200 repeats have been described, their role and the pathogenic threshold of the expansions remain to be identified and carry importance for diagnostics and genetic counseling. We present clinical and genetic data from a UK ALS cohort and report the detailed molecular study of an atypical somatically unstable expansion of 90 repeats. Our results across different tissues provide evidence for the pathogenicity of this repeat number by showing they can somatically expand in the central nervous system to the well characterized pathogenic range. Our results support the occurrence of multiple expansion events for C9ALS/FTD.
Annals of clinical and translational neurology | 2015
Ricarda A. Menke; Elizabeth Gray; Ching-Hua Lu; Jens Kuhle; Kevin Talbot; Andrea Malaspina; Martin Turner
Diffusion tensor imaging (DTI) is sensitive to white matter tract pathology. A core signature involving the corticospinal tracts (CSTs) has been identified in amyotrophic lateral sclerosis (ALS). Raised neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) is thought to reflect axonal damage in a range of neurological disorders. The relationship between these two measures was explored.
Journal of Neurology, Neurosurgery, and Psychiatry | 2015
Ching-Hua Lu; Axel Petzold; Jo Topping; Kezia Allen; Corrie Macdonald-Wallis; J Clarke; Neil Pearce; Jens Kuhle; Gavin Giovannoni; Pietro Fratta; Katie Sidle; Mark Fish; Richard W. Orrell; R S Howard; Linda Greensmith; Andrea Malaspina
Objective To investigate the role of longitudinal plasma neurofilament heavy chain protein (NfH) levels as an indicator of clinical progression and survival in amyotrophic lateral sclerosis (ALS). Methods A cross-sectional study involving 136 clinically heterogeneous patients with ALS and 104 healthy and neurological controls was extended to include a prospective analysis of 74 of these ALS cases, with samplings at approximately 3-month intervals in a follow-up period of up to 3 years. We analysed the correlation between longitudinal NfH-phosphoform levels and disease progression. Temporal patterns of NfH changes were evaluated using multilevel linear regression. Results Baseline plasma NfH levels were higher than controls only in patients with ALS with short disease duration to baseline sampling. Compared with controls, fast-progressing patients with ALS, particularly those with a short diagnostic latency and disease duration, had higher plasma NfH levels at an early stage and lower levels closer to end-stage disease. Lower NfH levels between visits were associated with rapid functional deterioration. We also detected antibodies against NfH, NfH aggregates and NfH cleavage products. Conclusions Disease progression in ALS involves defined trajectories of plasma NfH levels, reflecting speed of neurological decline and survival. Intervisit plasma NfH changes are also indicative of disease progression. This study confirms that longitudinal measurements of NfH plasma levels are more informative than cross-sectional studies, where the time of sampling may represent a bias in the interpretation of the results. Autoantibodies against NfH aggregates and NfH cleavage products may explain the variable expression of plasma NfH with disease progression. Trail registration number NIHRID6160.
PLOS ONE | 2012
Ching-Hua Lu; Axel Petzold; Bernadett Kalmar; James R.T. Dick; Andrea Malaspina; Linda Greensmith
Background Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials. Methodology/Principal Findings In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials. Conclusions/Significance These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS.
Neuroimmunology and Neuroinflammation | 2016
Ching-Hua Lu; K Allen; F Oei; E Leoni; Jens Kuhle; Pietro Fratta; Nikhil Sharma; Katie Sidle; Robert Howard; Richard W. Orrell; Mark Fish; Linda Greensmith; Neil Pearce; Gallo; Andrea Malaspina
Objective: To evaluate the combined blood expression of neuromuscular and inflammatory biomarkers as predictors of disease progression and prognosis in amyotrophic lateral sclerosis (ALS). Methods: Logistic regression adjusted for markers of the systemic inflammatory state and principal component analysis were carried out on plasma levels of creatine kinase (CK), ferritin, and 11 cytokines measured in 95 patients with ALS and 88 healthy controls. Levels of circulating biomarkers were used to study survival by Cox regression analysis and correlated with disease progression and neurofilament light chain (NfL) levels available from a previous study. Cytokines expression was also tested in blood samples longitudinally collected for up to 4 years from 59 patients with ALS. Results: Significantly higher levels of CK, ferritin, tumor necrosis factor (TNF)–α, and interleukin (IL)–1β, IL-2, IL-8, IL-12p70, IL-4, IL-5, IL-10, and IL-13 and lower levels of interferon (IFN)–γ were found in plasma samples from patients with ALS compared to controls. IL-6, TNF-α, and IFN-γ were the most highly regulated markers when all explanatory variables were jointly analyzed. High ferritin and IL-2 levels were predictors of poor survival. IL-5 levels were positively correlated with CK, as was TNF-α with NfL. IL-6 was strongly associated with CRP levels and was the only marker showing increasing expression towards end-stage disease in the longitudinal analysis. Conclusions: Neuromuscular pathology in ALS involves the systemic regulation of inflammatory markers mostly active on T-cell immune responses. Disease stratification based on the prognostic value of circulating inflammatory markers could improve clinical trials design in ALS.
Journal of Neurology, Neurosurgery, and Psychiatry | 2014
Pietro Fratta; J Charnock; Toby Collins; Anny Devoy; R S Howard; Andrea Malaspina; Richard W. Orrell; Katie Sidle; J Clarke; Maryam Shoai; Ching-Hua Lu; John Hardy; Plagnol; Elizabeth M. C. Fisher
Background Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative disorders that share significant clinical, pathological and genetic overlap and are considered to represent different ends of a common disease spectrum. Mutations in Profilin1 have recently been described as a rare cause of familial ALS. The PFN1 E117G missense variant has been described in familial and sporadic cases, and also found in controls, casting doubt on its pathogenicity. Interpretation of such variants represents a significant clinical-genetics challenge. Objective and results Here, we combine a screen of a new cohort of 383 ALS patients with multiple-sequence datasets to refine estimates of the ALS and FTD risk associated with PFN1 E117G. Together, our cohorts add up to 5118 ALS and FTD cases and 13 089 controls. We estimate a frequency of E117G of 0.11% in controls and 0.25% in cases. Estimated odds after population stratification is 2.44 (95% CI 1.048 to ∞, Mantel-Haenszel test p=0.036). Conclusions Our results show an association between E117G and ALS, with a moderate effect size.
Brain | 2016
Samir Abdelkarim; Sarah Morgan; Vincent Plagnol; Ching-Hua Lu; Gary Adamson; Robin Howard; Andrea Malaspina; Richard W. Orrell; Nikhil Sharma; Katie Sidle; J Clarke; Nick C. Fox; Jason D. Warren; Camilla N. Clark; Jonathan D. Rohrer; Elizabeth M. C. Fisher; Simon Mead; Alan Pittman; Pietro Fratta
Sir, Recently, Bannwarth and colleagues reported that mutations in CHCHD10 were causative of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), with compelling segregation data and functional investigations well supporting these findings (Bannwarth et al. , 2014). In a number of follow-up studies, CHCHD10 was screened in ALS, FTD and other neurodegenerative disorder cohorts—including autosomal dominant mitochondrial myopathy and late-onset spinal motor neuronopathy—and novel putative disease-causing variants were identified (Chaussenot et al. , 2014; Johnson et al. , 2014; Muller et al. , 2014; Ajroud-Driss et al. , 2015; Chio et al. , 2015; Kurzwelly et al. , 2015; Penttila et al. , 2015; Ronchi et al. , 2015; Zhang et al. , 2015). In particular, one variant, the Pro34Ser in exon 2, was reported by three studies to be present in >1% of ALS and FTD cases in Caucasian populations (Chaussenot et al. , 2014; Chio et al. , 2015; Ronchi et al. , 2015). In the context of ALS, this is a remarkable finding and would make the CHCHD10 Pro34Ser variant …