Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Orrell is active.

Publication


Featured researches published by Richard W. Orrell.


Neuron | 2011

A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD

Alan E. Renton; Elisa Majounie; Adrian James Waite; Javier Simón-Sánchez; Sara Rollinson; J. Raphael Gibbs; Jennifer C. Schymick; Hannu Laaksovirta; John C. van Swieten; Liisa Myllykangas; Hannu Kalimo; Anders Paetau; Yevgeniya Abramzon; Anne M. Remes; Alice Kaganovich; Sonja W. Scholz; Jamie Duckworth; Jinhui Ding; Daniel W. Harmer; Dena Hernandez; Janel O. Johnson; Kin Mok; Mina Ryten; Danyah Trabzuni; Rita Guerreiro; Richard W. Orrell; James Neal; Alexandra Murray; Justin Peter Pearson; Iris E. Jansen

The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.


Lancet Neurology | 2012

Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study

Elisa Majounie; Alan E. Renton; Kin Mok; Elise G.P. Dopper; Adrian James Waite; Sara Rollinson; Adriano Chiò; Gabriella Restagno; Nayia Nicolaou; Javier Simón-Sánchez; John C. van Swieten; Yevgeniya Abramzon; Janel O. Johnson; Michael Sendtner; Roger Pamphlett; Richard W. Orrell; Simon Mead; Katie Sidle; Henry Houlden; Jonathan D. Rohrer; Karen E. Morrison; Hardev Pall; Kevin Talbot; Olaf Ansorge; Dena Hernandez; Sampath Arepalli; Mario Sabatelli; Gabriele Mora; Massimo Corbo; Fabio Giannini

Summary Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. Funding Full funding sources listed at end of paper (see Acknowledgments).


The Journal of Physiology | 2003

Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise

M Hameed; Richard W. Orrell; M Cobbold; Geoffrey Goldspink; Stephen D. R. Harridge

The mRNA expression of two splice variants of the insulin‐like growth factor‐I (IGF‐I) gene, IGF‐IEa and mechano growth factor (MGF), were studied in human skeletal muscle. Subjects (eight young, aged 25–36 years, and seven elderly, aged 70–82 years) completed 10 sets of six repetitions of single legged knee extensor exercise at 80 % of their one repetition maximum. Muscle biopsy samples were obtained from the quadriceps muscle of both the control and exercised legs 2.5 h after completion of the exercise bout. Expression levels of the IGF‐I mRNA transcripts were determined using real‐time quantitative RT‐PCR with specific primers. The resting levels of MGF were significantly (≈100‐fold) lower than those of the IGF‐IEa isoform. No difference was observed between the resting levels of the two isoforms between the two subject groups. High resistance exercise resulted in a significant increase in MGF mRNA in the young, but not in the elderly subjects. No changes in IGF‐IEa mRNA levels were observed as a result of exercise in either group. The mRNA levels of the transcription factor MyoD were greater at rest in the older subjects (P < 0.05), but there was no significant effect of the exercise bout. Electrophoretic separation of myosin heavy chain (MHC) isoforms showed the older subjects to have a lower (P < 0.05) percentage of MHC‐II isoforms than the young subjects. However, no association was observed between the composition of the muscle and changes in the IGF‐I isoforms with exercise. The data from this study show an attenuated MGF response to high resistance exercise in the older subjects, indicative of age‐related desensitivity to mechanical loading. The data in young subjects indicate that the MGF and IGF‐IEa isoforms are differentially regulated in human skeletal muscle.


Lancet Neurology | 2010

Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study

Aleksey Shatunov; Kin Mok; Stephen Newhouse; Michael E. Weale; Bradley Smith; Caroline Vance; Lauren Johnson; Jan H. Veldink; Michael A. van Es; Leonard H. van den Berg; Wim Robberecht; Philip Van Damme; Orla Hardiman; Anne Farmer; Cathryn M. Lewis; Amy W. Butler; Olubunmi Abel; Peter Andersen; Isabella Fogh; Vincenzo Silani; Adriano Chiò; Bryan J. Traynor; Judith Melki; Vincent Meininger; John Landers; Peter McGuffin; Jonathan D. Glass; Hardev Pall; P. Nigel Leigh; John Hardy

Summary Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons that results in progressive weakness and death from respiratory failure, commonly within about 3 years. Previous studies have shown association of a locus on chromosome 9p with ALS and linkage with ALS–frontotemporal dementia. We aimed to test whether this genomic region is also associated with ALS in an independent set of UK samples, and to identify risk factors associated with ALS in a further genome-wide association study that combined data from the independent analysis with those from other countries. Methods We collected samples from patients with sporadic ALS from 20 UK hospitals and obtained UK control samples from the control groups of the Depression Case Control study, the Bipolar Affective Case Control Study, and the British 1958 birth cohort DNA collection. Genotyping of DNA in this independent analysis was done with Illumina HumanHap550 BeadChips. We then undertook a joint genome-wide analysis that combined data from the independent set with published data from the UK, USA, Netherlands, Ireland, Italy, France, Sweden, and Belgium. The threshold for significance was p=0·05 in the independent analysis, because we were interested in replicating a small number of previously reported associations, whereas the Bonferroni-corrected threshold for significance in the joint analysis was p=2·20×10−7 Findings After quality control, samples were available from 599 patients and 4144 control individuals in the independent set. In this analysis, two single nucleotide polymorphisms in a locus on chromosome 9p21.2 were associated with ALS: rs3849942 (p=2·22×10−6; odds ratio [OR] 1·39, 95% CI 1·21–1·59) and rs2814707 (p=3·32×10−6; 1·38, 1·20–1·58). In the joint analysis, which included samples from 4312 patients with ALS and 8425 control individuals, rs3849942 (p=4·64×10−10; OR 1·22, 95% CI 1·15–1·30) and rs2814707 (p=4·72×10−10; 1·22, 1·15–1·30) were associated with ALS. Interpretation We have found strong evidence of a genetic association of two single nucleotide polymorphisms on chromosome 9 with sporadic ALS, in line with findings from previous independent GWAS of ALS and linkage studies of ALS–frontotemporal dementia. Our findings together with these earlier findings suggest that genetic variation at this locus on chromosome 9 causes sporadic ALS and familial ALS–frontotemporal dementia. Resequencing studies and then functional analysis should be done to identify the defective gene. Funding ALS Therapy Alliance, the Angel Fund, the Medical Research Council, the Motor Neurone Disease Association of Great Britain and Northern Ireland, the Wellcome Trust, and the National Institute for Health Research Dementias and Neurodegenerative Diseases Research Network (DeNDRoN).


American Journal of Human Genetics | 2013

Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population

Jon Beck; Mark Poulter; Davina Hensman; Jonathan D. Rohrer; Colin J. Mahoney; Gary Adamson; Tracy Campbell; James Uphill; Aaron Borg; Pietro Fratta; Richard W. Orrell; Andrea Malaspina; James B. Rowe; Jeremy M Brown; John R. Hodges; Katie Sidle; James M. Polke; Henry Houlden; Jonathan M. Schott; Nick C. Fox; Sarah J. Tabrizi; Adrian M. Isaacs; John Hardy; Jason D. Warren; John Collinge; Simon Mead

Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800-4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized.


Journal of Neurology, Neurosurgery, and Psychiatry | 2003

Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis

Ahmed T. Toosy; David J. Werring; Richard W. Orrell; R S Howard; King; Gareth J. Barker; Dh Miller; Aj Thompson

Background: Histopathological studies of amyotrophic lateral sclerosis (ALS) are of end stage disease. Diffusion tensor imaging (DTI) provides the opportunity to investigate indirectly corticospinal tract pathology of ALS in vivo. Methods: DTI was used to study the water diffusion characteristics of the corticospinal tracts in 21 patients with ALS and 14 normal controls. The authors measured the fractional anisotropy (FA) and mean diffusivity (MD) along the pyramidal tracts from the internal capsules down to the pyramids. A mixed model regression analysis was used to compare FA and MD between the ALS and control groups. Results: FA showed a downward linear trend from the cerebral peduncles to the pyramids and was lower in the ALS group than controls at multiple levels of the corticospinal tract. At the internal capsules, FA was higher on the right. MD showed an upward trend, progressing caudally from the internal capsules to the pyramids. MD was higher at the level of the internal capsule in the ALS group, but caudally this difference was not maintained. No correlations were found between clinical markers of disability and water diffusion indices. Conclusions: These findings provide insights into the pathological processes of ALS. Differences in diffusion characteristics at different anatomical levels may relate to underlying tract architecture or the distribution of pathological damage in ALS. Further development may permit monitoring of progression and treatment of disease.


Lancet Neurology | 2015

C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis

Jonathan D. Rohrer; Adrian M. Isaacs; Sarah Mizielinska; Simon Mead; Tammaryn Lashley; Selina Wray; Katie Sidle; Pietro Fratta; Richard W. Orrell; John Hardy; Janice L. Holton; Tamas Revesz; Jason D. Warren

C9orf72 hexanucleotide repeat expansions are the most common cause of familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) worldwide. The clinical presentation is often indistinguishable from classic FTD or ALS, although neuropsychiatric symptoms are more prevalent and, for ALS, behavioural and cognitive symptoms occur more frequently. Pathogenic repeat length is in the hundreds or thousands, but the minimum length that increases risk of disease, and how or whether the repeat size affects phenotype, are unclear. Like in many patients with FTD and ALS, neuronal inclusions that contain TARDBP are seen, but are not universal, and the characteristic pathological finding is of dipeptide repeat (DPR) proteins, formed by unconventional repeat-associated non-ATG translation. Possible mechanisms of neurodegeneration include loss of C9orf72 protein and function, RNA toxicity, and toxicity from the DPR proteins, but which of these is the major pathogenic mechanism is not yet certain.


Human Brain Mapping | 2009

Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics

Olga Ciccarelli; Timothy E. J. Behrens; Heidi Johansen-Berg; Kevin Talbot; Richard W. Orrell; Robin Howard; Rita G. Nunes; David H. Miller; Paul M. Matthews; Alan J. Thompson; Stephen M. Smith

We aimed to investigate differences in fractional anisotropy (FA) between primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) and the relationship between FA and disease progression using tract‐based spatial statistics (TBSS).


Neurology | 2015

Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis.

Ching-Hua Lu; Corrie Macdonald-Wallis; Elizabeth Gray; Neil Pearce; Axel Petzold; Niklas Norgren; Gavin Giovannoni; Pietro Fratta; Katie Sidle; Mark Fish; Richard W. Orrell; Robin Howard; Kevin Talbot; Linda Greensmith; Jens Kuhle; Martin Turner; Andrea Malaspina

Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p < 0.0001). Blood NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p < 0.001). Conclusion: Blood-derived NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls.


Human Molecular Genetics | 2009

A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis

Adriano Chiò; Jennifer C. Schymick; Gabriella Restagno; Sonja W. Scholz; Federica Lombardo; Shiao Lin Lai; Gabriele Mora; Hon Chung Fung; Angela Britton; Sampath Arepalli; J. Raphael Gibbs; Michael A. Nalls; Stephen Berger; Lydia Kwee; Eugene Z. Oddone; Jinhui Ding; Cynthia Crews; Ian Rafferty; Nicole Washecka; Dena Hernandez; Luigi Ferrucci; Stefania Bandinelli; Jack M. Guralnik; Fabio Macciardi; Federica Torri; Sara Lupoli; Stephen J. Chanock; Gilles Thomas; David J. Hunter; Christian Gieger

The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 x 10(-7) and 1.16 x 10(-6)], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors.

Collaboration


Dive into the Richard W. Orrell's collaboration.

Top Co-Authors

Avatar

Andrea Malaspina

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

John Ealing

Salford Royal NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Bentley

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Dayalan Karat

Royal Victoria Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger Ackroyd

Northern General Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephen C Bourke

Northumbria Healthcare NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Chin Maguire

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar

Susan Baxter

University of Sheffield

View shared research outputs
Researchain Logo
Decentralizing Knowledge