Chithra Manisseri
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chithra Manisseri.
Bioresource Technology | 2010
Chenlin Li; Bernhard Knierim; Chithra Manisseri; Rohit Arora; Henrik Vibe Scheller; Manfred Auer; Kenneth P. Vogel; Blake A. Simmons; Seema Singh
The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cellulose crystallinity, increased surface area, and decreased lignin content compared to dilute acid pretreatment. Pretreated material was characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and chemistry methods. Ionic liquid pretreatment enabled a significant enhancement in the rate of enzyme hydrolysis of the cellulose component of switchgrass, with a rate increase of 16.7-fold, and a glucan yield of 96.0% obtained in 24h. These results indicate that ionic liquid pretreatment may offer unique advantages when compared to the dilute acid pretreatment process for switchgrass. However, the cost of the ionic liquid process must also be taken into consideration.
Plant Physiology | 2013
Laura E. Bartley; Matthew L. Peck; Sung-Ryul Kim; Berit Ebert; Chithra Manisseri; Dawn Chiniquy; Robert W. Sykes; Lingfang Gao; Carsten Rautengarten; Miguel E. Vega-Sánchez; Peter I. Benke; Patrick E. Canlas; Peijian Cao; Susan Brewer; Fan Lin; Whitney Smith; Xiaohan Zhang; Jay D. Keasling; Rolf E. Jentoff; Steven B. Foster; Jizhong Zhou; Angela Ziebell; Gynheung An; Henrik Vibe Scheller; Pamela C. Ronald
An acyltransferase reduces cross linking in grass cell walls, yielding grass leaves and stems that can be more easily broken down to make biofuels. Grass cell wall properties influence food, feed, and biofuel feedstock usage efficiency. The glucuronoarabinoxylan of grass cell walls is esterified with the phenylpropanoid-derived hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA). Feruloyl esters undergo oxidative coupling with neighboring phenylpropanoids on glucuronoarabinoxylan and lignin. Examination of rice (Oryza sativa) mutants in a grass-expanded and -diverged clade of BAHD acyl-coenzyme A-utilizing transferases identified four mutants with altered cell wall FA or p-CA contents. Here, we report on the effects of overexpressing one of these genes, OsAt10 (LOC_Os06g39390), in rice. An activation-tagged line, OsAT10-D1, shows a 60% reduction in matrix polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf tissue but no discernible phenotypic alterations in vegetative development, lignin content, or lignin composition. Two additional independent OsAt10 overexpression lines show similar changes in FA and p-CA content. Cell wall fractionation and liquid chromatography-mass spectrometry experiments isolate the cell wall alterations in the mutant to ester conjugates of a five-carbon sugar with p-CA and FA. These results suggest that OsAT10 is a p-coumaroyl coenzyme A transferase involved in glucuronoarabinoxylan modification. Biomass from OsAT10-D1 exhibits a 20% to 40% increase in saccharification yield depending on the assay. Thus, OsAt10 is an attractive target for improving grass cell wall quality for fuel and animal feed.
PLOS ONE | 2010
Ai Oikawa; Hiren J. Joshi; Emilie A. Rennie; Berit Ebert; Chithra Manisseri; Joshua L. Heazlewood; Henrik Vibe Scheller
Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity.
Molecular Plant | 2011
Lan Yin; Yves Verhertbruggen; Ai Oikawa; Chithra Manisseri; Bernhard Knierim; Lina Prak; Jacob Krüger Jensen; J. Paul Knox; Manfred Auer; William G. T. Willats; Henrik Vibe Scheller
Glycosyltransferases of the Cellulose Synthase Like D (CSLD) subfamily have been reported to be involved in tip growth and stem development in Arabidopsis. The csld2 and csld3 mutants are root hair defective and the csld5 mutant has reduced stem growth. In this study, we produced double and triple knockout mutants of CSLD2, CSLD3, and CSLD5. Unlike the single mutants and the csld2/csld3 double mutant, the csld2/csld5, csld3/csld5, and csld2/ csld3/csld5 mutants were dwarfed and showed severely reduced viability. This demonstrates that the cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development, and that they are involved in important processes besides the specialized role in tip growth. The mutant phenotypes indicate that CSLD2 and CSLD3 have overlapping functions with CSLD5 in early plant development, whereas the CSLD2 and CSLD3 proteins are non-redundant. To determine the biochemical function of CSLD proteins, we used transient expression in tobacco leaves. Microsomes containing heterologously expressed CSLD5 transferred mannose from GDP-mannose onto endogenous acceptors. The same activity was detected when CSLD2 and CSLD3 were co-expressed but not when they were expressed separately. With monosaccharides as exogenous acceptors, microsomal preparations from CSLD5-expressing plants mediated the transfer of mannose from GDP-mannose onto mannose. These results were supported by immunodetection studies that showed reduced levels of a mannan epitope in the cell walls of stem interfascicular fibers and xylem vessels of the csld2/csld3/csld5 mutant.
Bioenergy Research | 2010
Rohit Arora; Chithra Manisseri; Chenlin Li; Markus D. Ong; Henrik Vibe Scheller; Kenneth P. Vogel; Blake A. Simmons; Seema Singh
Plant and Cell Physiology | 2016
Fan Lin; Chithra Manisseri; Alexandra Fagerström; Matthew L. Peck; Miguel E. Vega-Sánchez; Brian Williams; Dawn Chiniquy; Prasenjit Saha; Sivakumar Pattathil; Brian Conlin; Lan Zhu; Michael G. Hahn; William G. T. Willats; Henrik Vibe Scheller; Pamela C. Ronald; Laura E. Bartley
Archive | 2009
Yuzuki Manabe; Yves Verhertbruggen; Maise Nafisi; Chithra Manisseri; Peter I. Benke; Aindrila Mukhopadhyay; Caroline Orfila; Yumiko Sakuragi; Henrik Vibe Scheller
Archive | 2009
Chenlin Li; Rohit Arora; Chithra Manisseri; Kenneth P. Vogel; Blake A. Simmons; Seema Singh
Archive | 2009
Henrik Vibe Scheller; Ai Oikawa; Lan Yin; Eva Knoch; Naomi Geshi; Carsten Rautengarten; Yuzuki Manabe; Chithra Manisseri
Archive | 2009
Laura E. Bartley; Chithra Manisseri; Brian Williams; Dawn Chiniquy; Jesper Harholt; Henrik Vibe Scheller; Pamela C. Ronald