Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seema Singh is active.

Publication


Featured researches published by Seema Singh.


Cancer and Metastasis Reviews | 2007

Chemokines in tumor angiogenesis and metastasis

Seema Singh; Anguraj Sadanandam; Rakesh K. Singh

Chemokines are a large group of low molecular weight cytokines that are known to selectively attract and activate different cell types. Although the primary function of chemokines is well recognized as leukocyte attractants, recent evidences indicate that they also play a role in number of tumor-related processes, such as growth, angiogenesis and metastasis. Chemokines activate cells through cell surface seven trans-membranes, G-protein-coupled receptors (GPCR). The role played by chemokines and their receptors in tumor pathophysiology is complex as some chemokines favor tumor growth and metastasis, while others may enhance anti-tumor immunity. These diverse functions of chemokines establish them as key mediators between the tumor cells and their microenvironment and play critical role in tumor progression and metastasis. In this review, we present some of the recent advances in chemokine research with special emphasis on its role in tumor angiogenesis and metastasis.


Clinical Cancer Research | 2009

Small-Molecule Antagonists for CXCR2 and CXCR1 Inhibit Human Melanoma Growth by Decreasing Tumor Cell Proliferation, Survival, and Angiogenesis

Seema Singh; Anguraj Sadanandam; Kalyan C. Nannuru; Michelle L. Varney; Rosemary Mayer-Ezell; Richard Bond; Rakesh K. Singh

Purpose: Melanoma, the most aggressive form of skin cancer, accounts for 75% of all skin cancer-related deaths and current therapeutic strategies are not effective in advanced disease. In the current study, we have investigated the efficacy of orally active small-molecule antagonist targeting CXCR2/CXCR1. Experimental Design: Human A375SM melanoma cells were treated with SCH-479833 or SCH-527123, and their effect on proliferation, motility, and invasion was evaluated in vitro. We examined the downstream signaling events in the cells following treatment with antagonists. For in vivo studies, A375SM cells were implanted subcutaneously into athymic nude mice followed by administration of SCH-479833, SCH-527123, or hydroxypropyl-β-cyclodextrin (20%) orally for 21 days and their effect on tumor growth and angiogenesis was evaluated. Results: Our data show that SCH-479833 or SCH-527123 inhibited the melanoma cell proliferation, chemotaxis, and invasive potential in vitro. Treatment of melanoma cells with SCH-479833 or SCH-527123 also inhibited tumor growth. Histologic and histochemical analyses showed significant (P < 0.05) decreases in tumor cell proliferation and microvessel density in tumors. Moreover, we observed a significant increase in melanoma cell apoptosis in SCH-479833- or SCH-527123-treated animals compared with controls. Conclusion: Together, these studies show that selectively targeting CXCR2/CXCR1 with orally active small-molecule inhibitors is a promising therapeutic approach for inhibiting melanoma growth and angiogenesis.


British Journal of Cancer | 2009

CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion

Seema Singh; Kalyan C. Nannuru; Anguraj Sadanandam; Michelle L. Varney; Rakesh K. Singh

The aggressiveness of malignant melanoma is associated with differential expression of CXCL-8 and its receptors, CXCR1 and CXCR2. However, the precise functional role of these receptors in melanoma progression remains unclear. In this study, we investigate the precise functional role of CXCR1 and CXCR2 in melanoma progression. CXCR1 or CXCR2 were stably overexpressed in human melanoma cell lines, SBC-2 (non-tumourigenic) and A375P (low-tumourigenic) exhibiting low endogenous expression of receptors. Functional assays were performed to study the resulting changes in cell proliferation, motility and invasion, and in vivo tumour growth using a mouse xenograft model. Our data demonstrated that CXCR1- or CXCR2-overexpressing SBC-2 and A375P melanoma cells had enhanced proliferation, chemotaxis and invasiveness in vitro. Interestingly, CXCR1 or CXCR2 overexpression in SBC-2 cells induced tumourigenicity, and A375P cells significantly enhanced tumour growth as examined in vivo. Immunohistochemical analyses showed significantly increased tumour cell proliferation and microvessel density and reduced apoptosis in tumours generated from CXCR1- or CXCR2-overexpressing melanoma cells. CXCR1- or CXCR2-induced modulation of melanoma cell proliferation and migration was observed to be mediated through the activation of ERK1/2 phosphorylation. Together, these studies demonstrate that CXCR1 and CXCR2 play essential role in growth, survival, motility and invasion of human melanoma.


Cancer Research | 2009

Host CXCR2-Dependent Regulation of Melanoma Growth, Angiogenesis, and Experimental Lung Metastasis

Seema Singh; Michelle L. Varney; Rakesh K. Singh

Crucial steps in tumor growth and metastasis are proliferation, survival, and neovascularization. Previously, we have shown that receptors for CXCL-8, CXCR1, and CXCR2 are expressed on endothelial cells and CXCR2 has been shown to be a putative receptor for angiogenic chemokines. In this report, we examined whether tumor angiogenesis and growth of CXCL-8-expressing human melanoma cells are regulated in vivo by a host CXCR2-dependent mechanism. We generated mCXCR2(-/-), mCXCR2(+/-), and wild-type nude mice following crosses between BALB/c mice heterozygous for nude(+/-) and heterozygous for mCXCR2(+/-). We observed a significant inhibition of human melanoma tumor growth and experimental lung metastasis in mCXCR2(-/-) mice as compared with wild-type nude mice. Inhibition in tumor growth and metastasis was associated with a decrease in melanoma cell proliferation, survival, inflammatory response, and angiogenesis. Together, these studies show the importance of host CXCR2-dependent CXCL-8-mediated angiogenesis in the regulation of melanoma growth and metastasis.


Cancer Letters | 2011

Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases

Michelle L. Varney; Seema Singh; Aihua Li; Rosemary Mayer-Ezell; Richard Bond; Rakesh K. Singh

CXCR1 and CXCR2 are G-protein coupled receptors, that have been shown to play important role in tumor growth and metastasis, and are prime targets for the development of novel therapeutics. Here, we report that targeting CXCR2 and CXCR1 activity using orally active small molecule antagonist (SCH-527123, SCH-479833) inhibits human colon cancer liver metastasis mediated by decreased neovascularization and enhanced malignant cell apoptosis. There were no differences in primary tumor growth. These studies demonstrate the important role of CXCR2/1 in colon cancer metastasis and that inhibition of CXCR2 and CXCR1, small molecule antagonists provides a novel therapeutic strategy.


Microvascular Research | 2010

Semaphorin 5A promotes angiogenesis by increasing endothelial cell proliferation, migration, and decreasing apoptosis

Anguraj Sadanandam; Erin G. Rosenbaugh; Seema Singh; Michelle L. Varney; Rakesh K. Singh

Semaphorin 5A (mouse, Sema5A; human, SEMA5A), is an axon regulator molecule and plays major roles during neuronal and vascular development. The importance of Sema5A during vasculogenesis, however, is unclear. The fact that Sema5A deficient mice display a defective branching of cranial vasculature supports its participation in blood vessel formation. In this study, we tested our hypothesis that Sema5A regulates angiogenesis by modulating various steps during angiogenesis. Accordingly, we demonstrated that the treatment of immortalized endothelial cells with recombinant extracellular domain of mouse Sema5A significantly increased endothelial cell proliferation and migration and decreased apoptosis. We also observed a relative increase of endothelial expression of anti-apoptotic genes relative to pro-apoptotic genes in Sema5A-treated endothelial cells suggesting its role in inhibition of apoptosis. In addition, our data suggest that Sema5A decreases apoptosis through activation of Akt, increases migration through activating Met tyrosine kinases and extracellular matrix degradation through matrix metalloproteinase 9. Moreover, in vivo Matrigel plug assays demonstrated that Sema5A induces endothelial cell migration from pre-existing vessels. In conclusion, the present work shows the pro-angiogenic role of Sema5A and provides clues on the signaling pathways that underlie them.


International Journal of Cancer | 2010

High gene expression of semaphorin 5A in pancreatic cancer is associated with tumor growth, invasion and metastasis

Anguraj Sadanandam; Michelle L. Varney; Seema Singh; Abdelkader E. Ashour; Nicolas Moniaux; Shonali Deb; Subodh M. Lele; Surinder K. Batra; Rakesh K. Singh

Semaphorin 5A (SEMA5A) is an axonal regulator molecule, which belongs to the Semaphorin family of proteins. Previously, we identified SEMA5A as a putative marker for aggressive pancreatic tumors. However, the expression, localization and functional significance of SEMA5A in pancreatic tumors remain unclear. In our study, we hypothesized that SEMA5A expression modulates pancreatic tumor growth and metastasis. We analyzed the constitutive expression and localization of SEMA5A in patient pancreatic tumors (n = 33) and unmatched normal pancreatic (n = 8) tissues and human pancreatic cancer cell lines (n = 16) with different histopathological characteristics. We observed significantly higher expression of SEMA5A protein expression (p < 0.05) in human pancreatic tumor tissue samples compared to normal pancreatic tissues. Similarly, the pancreatic cancer cell lines with higher tumorigenic and metastatic potentials as xenografts in nude mice expressed higher levels of SEMA5A mRNA compared to those with lower tumorigenic and metastatic potentials. Furthermore, we examined the functional role of SEMA5A in pancreatic tumor growth and invasion. Ectopic expression of mouse full‐length Sema5A in Panc1 (SEMA5A negative) cells significantly (p < 0.05) enhanced tumorigenesis, growth and metastasis in vivo as well as proliferation, invasiveness and homotypic aggregation in vitro. Together, these data demonstrate that the expression of SEMA5A in pancreatic cancer cells regulates tumorigenesis, growth, invasion and metastasis, and it also suggests a novel target for diagnosis and treatment of pancreatic cancer.


International Journal of Cancer | 2010

Small interfering RNA-mediated CXCR1 or CXCR2 knock-down inhibits melanoma tumor growth and invasion.

Seema Singh; Anguraj Sadanandam; Michelle L. Varney; Kalyan C. Nannuru; Rakesh K. Singh

CXCR1 and CXCR2 are receptors for CXCL‐8 and are differentially expressed on melanoma and endothelial cells. In this study, we determined the functional role of these receptors in melanoma progression. We stably knock‐down the expression of CXCR1 and/or CXCR2 in A375‐SM (SM; high metastatic) human melanoma cells by short‐hairpin RNA transfection. Cell proliferation, migration, invasion, ERK phosphorlyation and cytoskeletal rearrangements were carried out in vitro. In vivo growth was evaluated using murine subcutaneous xenograft model. Our data demonstrate that knock‐down of CXCR1 and/or CXCR2 expression, inhibited melanoma cell proliferation, survival, migration and invasive potential in vitro. Moreover, we also observed inhibition of ERK phosphorylation and cytoskeltal rearrangement in SM‐shCXCR1, SM‐shCXCR2 and SM‐shCXCR1/2 cells. Furthermore, when SM‐shCXCR1 or SM‐shCXCR2 cells implanted in nude mice, tumor growth, proliferation and microvessel density was significantly inhibited as compared to SM‐control cells. In addition, we observed a significant increase in melanoma cell apoptosis in SM‐shCXCR1 and SM‐shCXCR2 tumors compared to SM‐control tumors. Together, these data demonstrate that CXCR1 and CXCR2 expression play a critical role in human melanoma tumor progression and, functional blockade of CXCR1 and CXCR2 could be potentially used for future therapeutic intervention in malignant melanoma.


British Journal of Cancer | 2015

MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways.

Sanjeev K. Srivastava; Arun Bhardwaj; Sumit Arora; Nikhil Tyagi; Seema Singh; Joel Andrews; Steve McClellan; Bin Wang; Ajay P. Singh

Background:Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored.Methods:miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay.Results:miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells.Conclusions:miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.


British Journal of Cancer | 2017

Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK.

Girijesh Kumar Patel; Mohammad Aslam Khan; Arun Bhardwaj; Sanjeev K. Srivastava; Haseeb Zubair; Mary C. Patton; Seema Singh; Moh'd M. Khushman; Ajay P. Singh

Background:Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells.Methods:Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 3′-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay.Results:Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction. Sub-fractionation grouped EVs into distinct subtypes based on size distribution and marker profiles, and exosome (Gem-Exo) was the only sub-fraction that imparted chemoresistance. Gene expression analyses demonstrated upregulation of SOD2 and CAT (ROS-detoxifying genes), and downregulation of DCK (gemcitabine-metabolising gene) in Gem-Exo-treated cells. SOD/CAT upregulation resulted, at least in part, from exosome-mediated transfer of their transcripts and they suppressed basal and gemcitabine-induced ROS production, and partly promoted chemoresistance. DCK downregulation occurred through exosome-delivered miR-155 and either the functional suppression of miR-155 or restoration of DCK led to marked abrogation of Gem-Exo-mediated chemoresistance.Conclusions:Together, these findings establish a novel role of exosomes in mediating the acquired chemoresistance of PC.

Collaboration


Dive into the Seema Singh's collaboration.

Top Co-Authors

Avatar

Ajay P. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arun Bhardwaj

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Carter

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Varney

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sumit Arora

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikhil Tyagi

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge