Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiu-Ping Cheng is active.

Publication


Featured researches published by Chiu-Ping Cheng.


Transgenic Research | 2004

Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases

Wan-Chi Lin; Ching-Fang Lu; Jia-Wei Wu; Ming-Lung Cheng; Yu-Mei Lin; Ning-Sun Yang; Lowell Black; S. K. Green; Jaw-Fen Wang; Chiu-Ping Cheng

Development of effective disease-resistance to a broad-range of pathogens in crops usually requires tremendous resources and effort when traditional breeding approaches are taken. Genetic engineering of disease-resistance in crops has become popular and valuable in terms of cost and efficacy. Due to long-lasting and broad-spectrum of effectiveness against pathogens, employment of systemic acquired resistance (SAR) for the genetic engineering of crop disease-resistance is of particular interest. In this report, we explored the potential of using SAR-related genes for the genetic engineering of enhanced resistance to multiple diseases in tomato. The ArabidopsisNPR1 (nonexpresser of PR genes) gene was introduced into a tomato cultivar, which possesses heat-tolerance and resistance to tomato mosaic virus (ToMV). The transgenic lines expressing NPR1 were normal as regards overall morphology and horticultural traits for at least four generations. Disease screens against eight important tropical diseases revealed that, in addition to the innate ToMV-resistance, the tested transgenic lines conferred significant level of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW), and moderate degree of enhanced resistance to gray leaf spot (GLS) and bacterial spot (BS). Transgenic lines that accumulated higher levels of NPR1 proteins exhibited higher levels and a broader spectrum of enhanced resistance to the diseases, and enhanced disease-resistance was stably inherited. The spectrum and degree of these NPR1-transgenic lines are more significant compared to that of transgenic tomatoes reported to date. These transgenic lines may be further explored as future tomato stocks, aiming at building up resistance to a broader spectrum of diseases.


Planta | 2010

A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response

Tsai-Hung Hsieh; Chia-Wen Li; Ruey-Chih Su; Chiu-Ping Cheng; Sanjaya; Yi-Chien Tsai; Ming-Tsair Chan

Abiotic stresses such as cold, water deficit, and salt stresses severely reduce crop productivity. Tomato (Solanum lycopersicum) is an important economic crop; however, not much is known about its stress responses. To gain insight into stress-responsive gene regulation in tomato plants, we identified transcription factors from a tomato cDNA microarray. An ABA-responsive element binding protein (AREB) was identified and named SlAREB. In tomato protoplasts, SlAREB transiently transactivated luciferase reporter gene expression driven by AtRD29A (responsive to dehydration) and SlLAP (leucine aminopeptidase) promoters with exogenous ABA application, which was suppressed by the kinase inhibitor staurosporine, indicating that an ABA-dependent post-translational modification is required for the transactivation ability of SlAREB protein. Electrophoretic mobility shift assays showed that the recombinant DNA-binding domain of SlAREB protein is able to bind AtRD29A and SlLAP promoter regions. Constitutively expressed SlAREB increased tolerance to water deficit and high salinity stresses in both Arabidopsis and tomato plants, which maintained PSII and membrane integrities as well as water content in plant bodies. Overproduction of SlAREB in Arabidopsis thaliana and tomato plants regulated stress-related genes AtRD29A, AtCOR47, and SlCI7-like dehydrin under ABA and abiotic stress treatments. Taken together, these results show that SlAREB functions to regulate some stress-responsive genes and that its overproduction improves plant tolerance to water deficit and salt stress.


Plant Biotechnology Journal | 2010

Genetically pyramiding protease‐inhibitor genes for dual broad‐spectrum resistance against insect and phytopathogens in transgenic tobacco

Rajendran Senthilkumar; Chiu-Ping Cheng; Kai-Wun Yeh

Protease inhibitors provide a promising means of engineering plant resistance against attack by insects and pathogens. Sporamin (trypsin inhibitor) from sweet potato and CeCPI (phytocystatin) from taro were stacked in a binary vector, using pMSPOA (a modified sporamin promoter) to drive both genes. Transgenic tobacco lines of T0 and T1 generation with varied inhibitory activity against trypsin and papain showed resistance to both insects and phytopathogens. Larvae of Helicoverpa armigera that ingested tobacco leaves either died or showed delayed growth and development relative to control larvae. Transgenic tobacco-overexpressing the stacked genes also exhibited strong resistance against bacterial soft rot disease caused by Erwinia carotovora and damping-off disease caused by Pythium aphanidermatum. Thus, stacking protease-inhibitor genes, driven by the wound and pathogen responsive pMSPOA promoter, is an effective strategy for engineering crops to resistance against insects and phytopathogens.


Plant Physiology | 2011

Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway

Chia-Wen Li; Ruey-Chih Su; Chiu-Ping Cheng; Sanjaya; Su-Juan You; Tsai-Hung Hsieh; To-Chun Chao; Ming-Tsair Chan

Ralstonia solanacearum is the causal agent of bacterial wilt (BW), one of the most important bacterial diseases worldwide. We used cDNA microarray to survey the gene expression profile in transgenic tomato (Solanum lycopersicum) overexpressing Arabidopsis (Arabidopsis thaliana) CBF1 (AtCBF1), which confers tolerance to BW. The disease-resistant phenotype is correlated with constitutive expression of the Related-to-ABI3/VP1 (RAV) transcription factor, ethylene-responsive factor (ERF) family genes, and several pathogenesis-related (PR) genes. Using a transient assay system, we show that tomato RAV2 (SlRAV2) can transactivate the reporter gene driven by the SlERF5 promoter. Virus-induced gene silencing of SlERF5 and SlRAV2 in AtCBF1 transgenic and BW-resistant cultivar Hawaii 7996 plants gave rise to plants with enhanced susceptibility to BW. Constitutive overexpression of SlRAV2 in transgenic tomato plants induced the expression of SlERF5 and PR5 genes and increased BW tolerance, while knockdown of expression of SlRAV2 inhibited SlERF5 and PR5 gene expression under pathogen infection and significantly decreased BW tolerance. In addition, transgenic tomato overexpressing SlERF5 also accumulated higher levels of PR5 transcripts and displayed better tolerance to pathogen than wild-type plants. From these results, we conclude that SlERFs may act as intermediate transcription factors between AtCBF1 and PR genes via SlRAV in tomato, which results in enhanced tolerance to BW.


Planta | 2005

Transgenic tomato plants expressing an Arabidopsis thionin ( Thi2.1 ) driven by fruit-inactive promoter battle against phytopathogenic attack

Yuan-Li Chan; Venkatesh Prasad; Sanjaya; Kuei Hung Chen; Po Chang Liu; Ming-Tsair Chan; Chiu-Ping Cheng

Tomato is one of the most important crop plants; however, attacks by pathogens can cause serious losses in production. In this report, we explore the potential of using the Arabidopsis thionin (Thi2.1) gene to genetically engineer enhanced resistance to multiple diseases in tomato. Potential thionin toxicity in fruits was negated by the use of a fruit-inactive promoter to drive the Thi2.1 gene. In transgenic lines containing RB7/Thi2.1, constitutive Thi2.1 expression was detected in roots and incidentally in leaves, but not in fruits. Disease assays revealed that the transgenic lines that were tested conferred significant levels of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW). Further studies indicated that BW disease progression in transgenic lines was delayed by a systemic suppression of bacterial multiplication. By adopting a safe genetic engineering strategy, the present investigation is another step forward demonstrating thionin practicality in crop protection.


New Phytologist | 2013

CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co‐chaperonin role in Arabidopsis chloroplasts

Wen-Yu Kuo; Chien-Hsun Huang; An-Chi Liu; Chiu-Ping Cheng; S. H. Li; W. C. Chang; Celeste Weiss; Abdussalam Azem; Tsung-Luo Jinn

Iron superoxide dismutases (FeSODs; FSDs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FSD1 conferred the only detectable FeSOD activity, whereas the thylakoid membrane- and nucleoid-co-localized FSD2 and FSD3 double mutant showed arrested chloroplast development. FeSOD requires cofactor Fe for its activity, but its mechanism of activation is unclear. We used reversed-phase high-performance liquid chromatography (HPLC), gel filtration chromatography, LC-MS/MS, protoplast transient expression and virus-induced gene silencing (VIGS) analyses to identify and characterize a factor involved in FeSOD activation. We identified the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. The relationship between CPN20 and FeSOD was confirmed by in vitro experiments showing that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity. The in vivo results showed that CPN20-overexpressing mutants and mutants with defective co-chaperonin activity increased FSD1 activity, without changing the chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also led to decreased FeSOD activity. Our findings reveal that CPN20 can mediate FeSOD activation in chloroplasts, a role independent of its known function in the chaperonin system.


Planta | 2010

Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato

I-Chun Pan; Chia-Wen Li; Ruey-Chih Su; Chiu-Ping Cheng; Choun-Sea Lin; Ming-Tsair Chan

Ethylene-responsive transcription factors (ERFs) bind specifically to cis-acting DNA regulatory elements such as GCC boxes and play an important role in the regulation of defense- and stress-related genes in plants. In contrast to other ERFs, class II ERFs contain an ERF-associated amphiphilic repression (EAR) domain and act as GCC-mediated transcriptional repressors. In this study, SlERF3, a class II ERF was isolated from tomato and characterized. To examine whether the EAR motif of class II ERF proteins participates in ERF-mediated functions in plants, the EAR domain was deleted to generate SlERF3ΔRD. We show that SlERF3ΔRD protein retains the character of a transcription factor and becomes a GCC-mediated transcriptional activator. Constitutive expression of full-length SlERF3 in tomato severely suppressed growth and, as a result, no transgenic plants were obtained. However, no apparent effects on growth and development of SlERF3ΔRD transgenic plants were observed. Overexpression of SlERF3ΔRD in transgenic tomato induced expression of pathogenesis-related protein genes such as PR1, PR2 and PR5, and enhanced tolerance to Ralstonia solanacearum. Furthermore, transgenic Arabidopsis and tomatoes constitutively expressing SlERF3ΔRD exhibited reduced levels of membrane lipid peroxidation and enhanced tolerance to salt stress. In comparison with wild-type plants grown under stress conditions, transgenic SlERF3ΔRD tomatoes produced more flowers, fruits, and seeds. This study illustrates a gene-enhancing tolerance to both biotic and abiotic stresses in transgenic plants with the deletion of a repressor domain. Our findings suggest that class II ERF proteins may find important use in crop improvement or genetic engineering to increase stress tolerance in plants.


Plant Journal | 2014

The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity

Pin-Yao Huang; Yu-Hung Yeh; An-Chi Liu; Chiu-Ping Cheng; Laurent Zimmerli

Pattern-triggered immunity (PTI) is broad spectrum and manipulation of PTI is believed to represent an attractive way to engineer plants with broad-spectrum disease resistance. PTI is activated upon perception of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs). We have recently demonstrated that the L-type lectin receptor kinase-VI.2 (LecRK-VI.2) positively regulates Arabidopsis thaliana PTI. Here we show through in vitro pull-down, bimolecular fluorescence complementation and co-immunoprecipitation analyses that LecRK-VI.2 associates with the PRR FLS2. We also demonstrated that LecRK-VI.2 from the cruciferous plant Arabidopsis remains functional after interfamily transfer to the Solanaceous plant Nicotiana benthamiana. Wild tobacco plants ectopically expressing LecRK-VI.2 were indeed more resistant to virulent hemi-biotrophic and necrotrophic bacteria, but not to the fungal pathogen Botrytis cinerea suggesting that, as with Arabidopsis, the LecRK-VI.2 protective effect in N. benthamiana is bacteria specific. Ectopic expression of LecRK-VI.2 in N. benthamiana primed PTI-mediated reactive oxygen species production, mitogen-activated protein kinase (MAPK) activity, callose deposition and gene expression upon treatment with the MAMP flagellin. Our findings identified LecRK-VI.2 as a member of the FLS2 receptor complex and suggest that heterologous expression of components of PRR complexes can be used as tools to engineer plant disease resistance to bacteria.


Journal of General Virology | 1998

Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus

Chiu-Ping Cheng; Iris Tzafrir; Ben Lockhart; Neil E. Olszewski

Tubular structures containing bacilliform virions were observed in cell-free extracts of Commelina diffusa infected with Commelina yellow mottle badnavirus (CoYMV). The exterior of the tubule reacted with antibodies to CoYMV movement protein, but not with antibodies to virus coat protein. Similar tubular structures containing bacilliform particles were also observed in ultrathin sections of CoYMV-infected C. diffusa. These tubular structures traversed the cell wall at points where this was thickened or protruded. No similar structures were observed in healthy C. diffusa. These observations support the hypothesis that the virion-containing tubular structures observed in cell-free extracts are the same as those observed in situ, that these structures are composed, at least in part, of virus movement protein, and that they play a role in the cell-to-cell trafficking of virions of CoYMV.


Molecular Plant Pathology | 2016

Functional assignment to positively selected sites in the core type III effector RipG7 from Ralstonia solanacearum

Keke Wang; Philippe Remigi; Maria Anisimova; Fabien Lonjon; Ilona Kars; Andrey V. Kajava; Chien-Hui Li; Chiu-Ping Cheng; Fabienne Vailleau; Stéphane Genin; Nemo Peeters

The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts.

Collaboration


Dive into the Chiu-Ping Cheng's collaboration.

Top Co-Authors

Avatar

Yu-Mei Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

An-Chi Liu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Ju Chu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chien-Hui Li

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Der-Kang Lu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Fang-I Ho

World Vegetable Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge