Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jia-Wei Wu is active.

Publication


Featured researches published by Jia-Wei Wu.


Nature | 2000

Structural and biochemical basis of apoptotic activation by Smac/DIABLO.

Jijie Chai; Chunying Du; Jia-Wei Wu; Saw Kyin; Xiaodong Wang; Yigong Shi

Apoptosis (programmed cell death), an essential process in the development and homeostasis of metazoans, is carried out by caspases. The mitochondrial protein Smac/DIABLO performs a critical function in apoptosis by eliminating the inhibitory effect of IAPs (inhibitor of apoptosis proteins) on caspases. Here we show that Smac/DIABLO promotes not only the proteolytic activation of procaspase-3 but also the enzymatic activity of mature caspase-3, both of which depend upon its ability to interact physically with IAPs. The crystal structure of Smac/DIABLO at 2.2 Å resolution reveals that it homodimerizes through an extensive hydrophobic interface. Missense mutations inactivating this dimeric interface significantly compromise the function of Smac/DIABLO. As in the Drosophila proteins Reaper, Grim and Hid, the amino-terminal amino acids of Smac/DIABLO are indispensable for its function, and a seven-residue peptide derived from the amino terminus promotes procaspase-3 activation in vitro. These results establish an evolutionarily conserved structural and biochemical basis for the activation of apoptosis by Smac/DIABLO.


Nature | 2000

Structural basis of IAP recognition by Smac/DIABLO.

Geng Wu; Jijie Chai; Tomeka L. Suber; Jia-Wei Wu; Chunying Du; Xiaodong Wang; Yigong Shi

Apoptosis is an essential process in the development and homeostasis of all metazoans. The inhibitor-of-apoptosis (IAP) proteins suppress cell death by inhibiting the activity of caspases; this inhibition is performed by the zinc-binding BIR domains of the IAP proteins. The mitochondrial protein Smac/DIABLO promotes apoptosis by eliminating the inhibitory effect of IAPs through physical interactions. Amino-terminal sequences in Smac/DIABLO are required for this function, as mutation of the very first amino acid leads to loss of interaction with IAPs and concomitant loss of Smac/DIABLO function. Here we report the high-resolution crystal structure of Smac/DIABLO complexed with the third BIR domain (BIR3) of XIAP. Our results show that the N-terminal four residues (Ala-Val-Pro-Ile) in Smac/DIABLO recognize a surface groove on BIR3, with the first residue Ala binding a hydrophobic pocket and making five hydrogen bonds to neighbouring residues on BIR3. These observations provide a structural explanation for the roles of the Smac N terminus as well as the conserved N-terminal sequences in the Drosophila proteins Hid/Grim/Reaper. In conjunction with other observations, our results reveal how Smac may relieve IAP inhibition of caspase-9 activity. In addition to explaining a number of biological observations, our structural analysis identifies potential targets for drug screening.


Cell | 2002

Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde

Min Hu; Pingwei Li; Muyang Li; Wenyu Li; Tingting Yao; Jia-Wei Wu; Wei Gu; Robert E. Cohen; Yigong Shi

The ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. HAUSP, a representative UBP, specifically deubiquitinates and hence stabilizes the tumor suppressor protein p53. Here, we report the crystal structures of the 40 kDa catalytic core domain of HAUSP in isolation and in complex with ubiquitin aldehyde. These studies reveal that the UBP deubiquitinating enzymes exhibit a conserved three-domain architecture, comprising Fingers, Palm, and Thumb. The leaving ubiquitin moiety is specifically coordinated by the Fingers, with its C terminus placed in the active site between the Palm and the Thumb. Binding by ubiquitin aldehyde induces a drastic conformational change in the active site that realigns the catalytic triad residues for catalysis.


Nature Structural & Molecular Biology | 2002

Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi.

Wenyu Li; Srinivasa M. Srinivasula; Jijie Chai; Pingwei Li; Jia-Wei Wu; ZhiJia Zhang; Emad S. Alnemri; Yigong Shi

HtrA2/Omi, a mitochondrial serine protease in mammals, is important in programmed cell death. However, the underlining mechanism of HtrA2/Omi-mediated apoptosis remains unclear. Analogous to the bacterial homolog HtrA (DegP), the mature HtrA2 protein contains a central serine protease domain and a C-terminal PDZ domain. The 2.0 Å crystal structure of HtrA2/Omi reveals the formation of a pyramid-shaped homotrimer mediated exclusively by the serine protease domains. The peptide-binding pocket of the PDZ domain is buried in the intimate interface between the PDZ and the protease domains. Mutational analysis reveals that the monomeric HtrA2/Omi mutants are unable to induce cell death and are deficient in protease activity. The PDZ domain modulates HtrA2/Omi-mediated cell death activity by regulating its serine protease activity. These structural and biochemical observations provide an important framework for deciphering the mechanisms of HtrA2/Omi-mediated apoptosis.


Molecular Cell | 2001

Crystal Structure of a Phosphorylated Smad2: Recognition of Phosphoserine by the MH2 Domain and Insights on Smad Function in TGF-β Signaling

Jia-Wei Wu; Min Hu; Jijie Chai; Joan Seoane; Morgan Huse; Carey Li; Daniel J. Rigotti; Saw Kyin; Tom W. Muir; Robert Fairman; Joan Massagué; Yigong Shi

Ligand-induced phosphorylation of the receptor-regulated Smads (R-Smads) is essential in the receptor Ser/Thr kinase-mediated TGF-beta signaling. The crystal structure of a phosphorylated Smad2, at 1.8 A resolution, reveals the formation of a homotrimer mediated by the C-terminal phosphoserine (pSer) residues. The pSer binding surface on the MH2 domain, frequently targeted for inactivation in cancers, is highly conserved among the Co- and R-Smads. This finding, together with mutagenesis data, pinpoints a functional interface between Smad2 and Smad4. In addition, the pSer binding surface on the MH2 domain coincides with the surface on R-Smads that is required for docking interactions with the serine-phosphorylated receptor kinases. These observations define a bifunctional role for the MH2 domain as a pSer-X-pSer binding module in receptor Ser/Thr kinase signaling pathways.


Nature | 2005

Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans

Nieng Yan; Jijie Chai; Eui Seung Lee; Lichuan Gu; Qun Liu; Jiaqing He; Jia-Wei Wu; David Kokel; Huilin Li; Quan Hao; Ding Xue; Yigong Shi

Interplay among four genes—egl-1, ced-9, ced-4 and ced-3—controls the onset of programmed cell death in the nematode Caenorhabditis elegans. Activation of the cell-killing protease CED-3 requires CED-4. However, CED-4 is constitutively inhibited by CED-9 until its release by EGL-1. Here we report the crystal structure of the CED-4–CED-9 complex at 2.6 Å resolution, and a complete reconstitution of the CED-3 activation pathway using homogeneous proteins of CED-4, CED-9 and EGL-1. One molecule of CED-9 binds to an asymmetric dimer of CED-4, but specifically recognizes only one of the two CED-4 molecules. This specific interaction prevents CED-4 from activating CED-3. EGL-1 binding induces pronounced conformational changes in CED-9 that result in the dissociation of the CED-4 dimer from CED-9. The released CED-4 dimer further dimerizes to form a tetramer, which facilitates the autoactivation of CED-3. Together, our studies provide important insights into the regulation of cell death activation in C. elegans.


Cell | 2002

Structural Mechanism of Smad4 Recognition by the Nuclear Oncoprotein Ski: Insights on Ski-Mediated Repression of TGF-β Signaling

Jia-Wei Wu; Ariel R. Krawitz; Jijie Chai; Wenyu Li; Fangjiu Zhang; Kunxin Luo; Yigong Shi

The Ski family of nuclear oncoproteins represses TGF-beta signaling through interactions with the Smad proteins. The crystal structure of the Smad4 binding domain of human c-Ski in complex with the MH2 domain of Smad4 reveals specific recognition of the Smad4 L3 loop region by a highly conserved interaction loop (I loop) from Ski. The Ski binding surface on Smad4 significantly overlaps with that required for binding of the R-Smads. Indeed, Ski disrupts the formation of a functional complex between the Co- and R-Smads, explaining how it could lead to repression of TGF-beta, activin, and BMP responses. Intriguingly, the structure of the Ski fragment, stabilized by a bound zinc atom, resembles the SAND domain, in which the corresponding I loop is responsible for DNA binding.


Science | 2012

GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy.

Shu-Yong Lin; Terytty Yang Li; Qing Liu; Cixiong Zhang; Xiaotong Li; Yan Chen; Guili Lian; Qi Liu; Ka Ruan; Zhen Wang; Chen-Song Zhang; Kun-Yi Chien; Jia-Wei Wu; Qinxi Li; Jiahuai Han; Sheng-Cai Lin

Acetylation and Autophagy Autophagy allows cells to digest their own components when necessary to survive stressful conditions. Lin et al. (p. 477) and Yi et al. (p. 474) describe signaling mechanisms in mammalian cells and yeast, respectively, by which autophagy is regulated by protein acetylation. In mammalian cells deprived of serum, the acetyltransferase TIP60 was activated by phosphorylation by the protein kinase GSK3 (glycogen synthase kinase 3). TIP60s target appeared to be a protein kinase central to autophagy regulation, ULK1. This activating pathway was required for autophagy in the absence of serum, but was not needed for autophagy in cells deprived of glucose. In the yeast Saccharomyces cerevisiae starved of nitrogen, another acetylation mechanism was uncovered. Starvation led to activation of the histone acetyltransferase Esa1, which acetylated the protein Atg3, a key component of the autophagy machinery, thus increasing its interaction with another autophagy protein, Atg8. A signaling pathway is involved in cellular responses to serum starvation but not glucose starvation. In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser86, which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60S86A that cannot be phosphorylated by GSK3 could not undergo serum deprivation–induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1−/− mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.


Nature | 2009

Structural insight into the autoinhibition mechanism of AMP-activated protein kinase

Lei Chen; Zhi-Hao Jiao; Li-Sha Zheng; Yuan-Yuan Zhang; Shu-Tao Xie; Zhi-Xin Wang; Jia-Wei Wu

The AMP-activated protein kinase (AMPK) is characterized by its ability to bind to AMP, which enables it to adjust enzymatic activity by sensing the cellular energy status and maintain the balance between ATP production and consumption in eukaryotic cells. It also has important roles in the regulation of cell growth and proliferation, and in the establishment and maintenance of cell polarity. These important functions have rendered AMPK an important drug target for obesity, type 2 diabetes and cancer treatments. However, the regulatory mechanism of AMPK activity by AMP binding remains unsolved. Here we report the crystal structures of an unphosphorylated fragment of the AMPK α-subunit (KD-AID) from Schizosaccharomyces pombe that contains both the catalytic kinase domain and an autoinhibitory domain (AID), and of a phosphorylated kinase domain from Saccharomyces cerevisiae (Snf1-pKD). The AID binds, from the ‘backside’, to the hinge region of its kinase domain, forming contacts with both amino-terminal and carboxy-terminal lobes. Structural analyses indicate that AID binding might constrain the mobility of helix αC, hence resulting in an autoinhibited KD-AID with much lower kinase activity than that of the kinase domain alone. AMP activates AMPK both allosterically and by inhibiting dephosphorylation. Further in vitro kinetic studies demonstrate that disruption of the KD-AID interface reverses the autoinhibition and these AMPK heterotrimeric mutants no longer respond to the change in AMP concentration. The structural and biochemical data have shown the primary mechanism of AMPK autoinhibition and suggest a conformational switch model for AMPK activation by AMP.


Nature | 2007

The structural basis for activation of plant immunity by bacterial effector protein AvrPto

Weiman Xing; Yan Zou; Qun Liu; Jianing Liu; Xi Luo; Qingqiu Huang; She Chen; Lihuang Zhu; Ruchang Bi; Quan Hao; Jia-Wei Wu; Jian-Min Zhou; Jijie Chai

Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto–Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto–Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.

Collaboration


Dive into the Jia-Wei Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge