Chiung-Fen Chang
Tunghai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chiung-Fen Chang.
Bioresource Technology | 2001
W.T. Tsai; Ching-Jui Chang; Song-Yung Wang; Chiung-Fen Chang; S.F Chien; H.F Sun
In the present study, granular activated carbons were prepared from agricultural waste corn cob by chemical activation with potassium salts and/or physical activation with CO2. Under the experimental conditions investigated, potassium hydroxide (KOH) and potassium carbonate (K2CO3) were effective activating agents for chemical activation during a ramping period of 10 degrees C/min and subsequent gasification (i.e., physical activation) at a soaking period of 800 degrees C. Large BET surface areas (>1,600 m2/g) of activated carbons were thus obtained by the combined activation. In addition, this study clearly showed that the porosity created in the acid-unwashed carbon products is substantially lower than that of acid-washed carbon products due to potassium salts left in the pore structure.
Journal of Colloid and Interface Science | 2003
Ching-Yuan Chang; Wen-Tien Tsai; C.H. Ing; Chiung-Fen Chang
In the present study, a hydrophobic zeolite was used as an adsorbent for the adsorption of polyethylene glycol (PEG) in water solution and electroplating solution at 25 degrees C. The adsorption capacities were determined through the adsorption isotherms in a thermostated shaker. The rate of adsorption, on the other hand, was investigated in a batch adsorber under controlled process parameters such as initial PEG concentration (30, 70, 110, 150, 200, and 300 mg x dm(-3)), agitation speed (200, 800, and 1000 rpm), and adsorbent particle size (0.72, 1.44, and 2.03 mm). A batch kinetic model, according to a pseudo-second-order mechanism, has been tested to predict the rate constant of adsorption, equilibrium adsorption capacity, time of half-adsorption, and equilibrium concentration by the fitting of the experimental data. The results of the adsorption isotherm and kinetic studies show that the adsorption process can well be described with the Langmuir and Freundlich models and the pseudo-second-order equation, respectively. Comparing the values of adsorption parameters of PEG in water solution and electroplating solution, there are no significant differences. In addition, the effective diffusion coefficient of the PEG molecule in the microporous adsorbent has been estimated at about 3.20 x 10(-8) cm(2)s(-1) based on the restrictive diffusion model.
Journal of Hazardous Materials | 2009
Chia-Chi Chang; Chun-Yu Chiu; Ching-Yuan Chang; Chiung-Fen Chang; Yi-Hung Chen; Dar-Ren Ji; Yue-Hwa Yu; Pen-Chi Chiang
In this study, a high-gravity rotating packed bed (HGRPB) was used as a catalytic ozonation reactor to decompose dimethyl phthalate (DMP), an endocrine disrupting chemical commonly encountered. The HGRPB is an effective gas-liquid mixing equipment which can enhance the ozone mass transfer coefficient. Platinum-containing catalyst (Pt/-Al2O3) of Dash 220N and ultra violet (UV) lamp were combined in the high-gravity ozonation (HG-OZ) system to enhance the self-decomposition of molecular ozone in liquid to form highly reactive radical species. Different combinations of HG-OZ with Dash 220N and UV for the degradation of DMP were tested. These include HG-OZ, HG catalytic OZ (HG-Pt-OZ), HG photolysis OZ (HG-UV-OZ) and HG-UV-Pt-OZ. The result indicated that all the above four ozonation processes result in significant decomposition of DMP and mineralization of total organic carbon (TOC) at the applied ozone dosage per volume of liquid sample of 1.2gL(-1). The UV and Pt/gamma-Al2O3 combined in HG-OZ can enhance the TOC mineralization efficiency (eta(TOC)) to 56% (via HG-UV-OZ) and 57% (via HG-Pt-OZ), respectively, while only 45% with ozone only. The process of HG-UV-Pt-OZ offers the highest eta(TOC) of about 68%.
Journal of Hazardous Materials | 2008
Chiung-Fen Chang; Ching-Yuan Chang; Kuo-En Hsu; Shu-Chi Lee; Wolfgang Höll
The hypercrosslinked polymers Macronet MN-150 and MN-500 (denoted as MN-150 and MN-500) were investigated to remove the pesticide methomyl from aqueous solutions via adsorption. Furthermore, the effect of humid acid (used as background organic compound) on the adsorption capacity of methomyl for MN-150 was examined. The equilibria and kinetics of the adsorption of methomyl onto MN-150 and MN-500 can be well correlated with Langmuir and Freundlich isotherms, and conventional kinetic models (e.g., surface and pore diffusion models), respectively. The polymer MN-150 possesses a high potential to be applied as adsorbent for the removal of methomyl from aqueous solution when compared with MN-500. Furthermore, the competitive effect of humic acid on adsorption of methomyl on MN-150 can be ignored at low equilibrium concentrations. The transport of methomyl from solution into the polymer adsorbents is controlled by both, external and internal mass transfer mechanisms with film-surface diffusion model offering the better description. The surface mobility and flux of surface diffusion increase as the initial concentration increases.
Journal of Hazardous Materials | 2009
Jyi-Yeong Tseng; Ching-Yuan Chang; Chiung-Fen Chang; Yi-Hung Chen; Chia-Chi Chang; Dar-Ren Ji; Chun-Yu Chiu; Pen-Chi Chiang
This study examined the desorption of copper ions, which were adsorbed on the magnetic polymer adsorbent (MPA) of polyvinyl acetate-iminodiacetic acid (M-PVAC-IDA), by ethylenediaminetetraacetic acid (EDTA). Stage-wise desorptions were applied to remove the Cu(II) ions from the Cu(II) adsorbed M-PVAC-IDA (A-M-PVAC-IDA). About seven desorption runs were needed to regenerate the A-M-PVAC-IDA. The Cu(II) desorbed M-PVAC-IDA (D-M-PVAC-IDA) was then reused to adsorb the Cu(II) ions from the Cu(II) ions-containing solution. The cyclic adsorption and desorption operations (CADOs) were performed to further elucidate the kinetics and equilibria of the desorption system of EDTA/A-M-PVAC-IDA and the adsorption system of Cu(II)-containing solution/D-M-PVAC-IDA. Two simple kinetic models, the pseudo-first-order equation and pseudo-second-order equation, were employed to simulate the kinetic behaviors of adsorption and desorption. With respect to the kinetics of adsorption behavior, the simulated results by both kinetic models exhibit good agreement with the experimental data. However, the adsorption capacities (q(e)) estimated by the pseudo-first-order equation are more accurate in comparison with those simulated by the pseudo-second-order equation. As for the desorption kinetics, the examination of correlation coefficients of model fittings of data shows that the pseudo-first-order kinetic model gives the better agreement for the cases with different initial solid-phase concentrations and can accurately compute the equilibrium concentrations of solid-phase. The values of q(e) after CADOs are consistent with the predicted results via the previous work, evidencing that the adsorption behavior and the characteristics of the regenerated adsorbent of D-M-PVAC-IDA were not altered. In the experiments of desorbing copper ions and CADOs, the desorption isotherm was set up. The Freundlich and Langmuir adsorption (or desorption) isotherms were used to simulate the equilibrium of desorption. The results indicate that the Freundlich equation shows better agreement with the experimental data than the Langmuir equation. The information thus obtained is useful for the better use of M-PVAC-IDA on the removal of heavy mental ions of Cu(II) from the Cu(II) ion-containing water solution with the consideration of its regeneration.
Bioresource Technology | 2009
Wen-Kai Tu; Je-Lung Shie; Ching-Yuan Chang; Chiung-Fen Chang; Cheng-Fang Lin; Sen-Yeu Yang; Jing T. Kuo; Dai-Gee Shaw; Yii-Der You; Duu-Jong Lee
The radio frequency plasma pyrolysis technology, which can overcome the disadvantages of common pyrolysis methods such as less gas products while significant tar formation, was used for pyrolyzing the biomass waste of rice straw. The experiments were performed at various plateau temperatures of 740, 813, 843 and 880K with corresponding loading powers of 357, 482, 574 and 664W, respectively. The corresponding yields of gas products (excluding nitrogen) from rice straw are 30.7, 56.6, 62.5 and 66.5wt.% with respect to the original dried sample and the corresponding specific heating values gained from gas products are about 4548, 4284, 4469 and 4438kcalkg(-1), respectively, for the said cases. The corresponding combustible portions remained in the solid residues are about 64.7, 35, 28.2 and 23.5wt.% with specific heating values of 4106, 4438, 4328 and 4251kcalkg(-1) with respective to solid residues, while that in the original dried sample is 87.2wt.% with specific heating value of 4042kcalkg(-1). The results indicated that the amount of combustibles converted into gas products increases with increasing plateau temperature. The kinetic model employed to describe the pyrolytic conversion of rice straw at constant temperatures agrees well with the experimental data. The best curve fittings render the frequency factor of 5759.5s(-1), activation energy of 74.29kJ mol(-1) and reaction order of 0.5. Data and information obtained are useful for the future design and operation of pyrolysis of rice straw via radio frequency plasma.
Journal of Hazardous Materials | 2009
Chia-Chi Chang; Chun-Yu Chiu; Ching-Yuan Chang; Chiung-Fen Chang; Yi-Hung Chen; Dar-Ren Ji; Jyi-Yeong Tseng; Yue-Hwa Yu
In this study, a high-gravity rotating packed bed (HGRPB or HG) was used as a catalytic ozonation (Cat-OZ) reactor to decompose phenol. The operation of HGRPB system was carried out in a semi-batch apparatus which combines two major parts, namely the rotating packed bed (RPB) and photo-reactor (PR). The high rotating speed of RPB can give a high volumetric gas-liquid mass transfer coefficient with one or two orders of magnitude higher than those in the conventional packed beds. The platinum-containing catalyst (Dash 220N, Pt/gamma-Al(2)O(3)) and activated alumina (gamma-Al(2)O(3)) were packed in the RPB respectively to adsorb molecular ozone and the target pollutant of phenol on the surface to catalyze the oxidation of phenol. An ultra violet (UV) lamp (applicable wavelength lambda=200-280 nm) was installed in the PR to enhance the self-decomposition of molecular ozone in water to form high reactive radical species. Different combinations of advanced oxidation processes (AOPs) with the HGRPB for the degradation of phenol were tested. These included high-gravity OZ (HG-OZ), HG catalytic OZ (HG-Cat-OZ), HG photolysis OZ (HG-UV-OZ) and HG-Cat-OZ with UV (HG-Cat-UV-OZ). The decomposition efficiency of total organic compound (eta(TOC)) of HG-UV-OZ with power of UV (P(UV)) of 16W is 54% at applied dosage of ozone per volume sample m(A,in)=1200 mg L(-1) (reaction time t=20 min), while that of HG-OZ without the UV irradiation is 24%. After 80 min oxidation (m(A,in)=4800 mg L(-1)), the eta(TOC) of HG-UV-OZ is as high as 94% compared to 82% of HG-OZ process. The values of eta(TOC) for HG-Cat-OZ process with m(S)=42 g are 56% and 87% at m(A,in)=1200 and 4800 mg L(-1), respectively. By increasing the catalyst mass to 77 g, the eta(TOC) for the HG-Cat-OZ process reaches 71% and 90% at m(A,in)=1200 and 4800 mg L(-1), respectively. The introduction of Pt/gamma-Al(2)O(3) as well as UV irradiation in the HG-OZ process can enhance the eta(TOC) of phenol significantly, while gamma-Al(2)O(3) exhibits no significant effect on eta(TOC). For the HG-Cat-UV-OZ process with m(S)=42 g, the values of eta(TOC) are 60% and 94% at m(A,in)=1200 and 4800 mg L(-1), respectively. Note that the decomposition of TOC via HG-UV-OZ is already vigorous. Thus, the enhancing effect of catalyst on eta(TOC) is minor.
Environmental Technology | 2004
Chyow-San Chiou; Chiung-Fen Chang; Ching-Yuan Chang; Wu Yp; Chang Ct; Yuan-Shan Li; Y. H. Chen
This study evaluated the dissolution behavior of basic oxygen furnace slag (BOF slag) and the performance of H2O2 with BOF slag denoted as H2O2 /BOF slag process to degrade polyethylene glycol (PEG) in the aqueous solution. The concentration of total organic carbon (TOC) was chosen as a mineralization index of the degradation of PEG by the H2O2/BOF slag process. A first-order kinetic model with respect to TOC was adopted to represent the mineralization of PEG by H2O2 /BOF slag process. The experimental results in this study suggested that dosages with 3.98 × 10-4 mole min-1 l-1 H2O2 and 15 gl-1 BOF slag loading in the solution at pH 2 provided the optimal operation conditions for the mineralization of PEG yielding a 75.5% treatment efficiency at 100 min reaction time. The H2O2 /Fe2+ ratio was then determined to be 13.5 : 1.
The Scientific World Journal | 2015
Chia-Chi Chang; Jyi-Yeong Tseng; Dar-Ren Ji; Chun-Yu Chiu; De-Sheng Lu; Ching-Yuan Chang; Min-Hao Yuan; Chiung-Fen Chang; Chyow-San Chiou; Yi-Hung Chen; Je-Lueng Shie
Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.2, 26.0, and 43.2 emu g−1 with superparamagnetism, respectively. The average size of M-PVAL by number is 0.75 μm in micro size. Adsorption experiments include three cases: (1) adjustment of initial pH (pH0) of solution to 5, (2) no adjustment of pH0 with value in 6.04–6.64, and (3) adjusted pH0 = 7. The corresponding saturated amounts of adsorption of unimolecular layer of Langmuir isotherm are 4.01, 5.21, and 4.22 mg g−1, respectively. Values of heterogeneity factor of Freundlich isotherm are 2.59, 2.19, and 2.59 which are greater than 1, revealing the favorable adsorption of DMP/M-PVAL system. Values of adsorption activation energy per mole of Dubinin-Radushkevich isotherm are, respectively, of low values of 7.04, 6.48, and 7.19 kJ mol−1, indicating the natural occurring of the adsorption process studied. The tiny size of adsorbent makes the adsorption take place easily while its superparamagnetism is beneficial for the separation and recovery of micro adsorbent from liquid by applying magnetic field after completion of adsorption.
The Scientific World Journal | 2015
Dar-Ren Ji; Chia-Chi Chang; Shih-Yun Chen; Chun-Yu Chiu; Jyi-Yeong Tseng; Ching-Yuan Chang; Chiung-Fen Chang; Sheng-Wei Chiang; Zang-Sie Hung; Je-Lueng Shie; Yi-Hung Chen; Min-Hao Yuan
Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected. The η DMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure P T, a higher P T provides more oxygen for the forward reaction with DMP, while overhigh P T increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested P T of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the η DMP and η TOC are 93 and 36%, respectively.