Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyi-Yeong Tseng is active.

Publication


Featured researches published by Jyi-Yeong Tseng.


Journal of Hazardous Materials | 2009

Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent.

Jyi-Yeong Tseng; Ching-Yuan Chang; Chiung-Fen Chang; Yi-Hung Chen; Chia-Chi Chang; Dar-Ren Ji; Chun-Yu Chiu; Pen-Chi Chiang

This study examined the desorption of copper ions, which were adsorbed on the magnetic polymer adsorbent (MPA) of polyvinyl acetate-iminodiacetic acid (M-PVAC-IDA), by ethylenediaminetetraacetic acid (EDTA). Stage-wise desorptions were applied to remove the Cu(II) ions from the Cu(II) adsorbed M-PVAC-IDA (A-M-PVAC-IDA). About seven desorption runs were needed to regenerate the A-M-PVAC-IDA. The Cu(II) desorbed M-PVAC-IDA (D-M-PVAC-IDA) was then reused to adsorb the Cu(II) ions from the Cu(II) ions-containing solution. The cyclic adsorption and desorption operations (CADOs) were performed to further elucidate the kinetics and equilibria of the desorption system of EDTA/A-M-PVAC-IDA and the adsorption system of Cu(II)-containing solution/D-M-PVAC-IDA. Two simple kinetic models, the pseudo-first-order equation and pseudo-second-order equation, were employed to simulate the kinetic behaviors of adsorption and desorption. With respect to the kinetics of adsorption behavior, the simulated results by both kinetic models exhibit good agreement with the experimental data. However, the adsorption capacities (q(e)) estimated by the pseudo-first-order equation are more accurate in comparison with those simulated by the pseudo-second-order equation. As for the desorption kinetics, the examination of correlation coefficients of model fittings of data shows that the pseudo-first-order kinetic model gives the better agreement for the cases with different initial solid-phase concentrations and can accurately compute the equilibrium concentrations of solid-phase. The values of q(e) after CADOs are consistent with the predicted results via the previous work, evidencing that the adsorption behavior and the characteristics of the regenerated adsorbent of D-M-PVAC-IDA were not altered. In the experiments of desorbing copper ions and CADOs, the desorption isotherm was set up. The Freundlich and Langmuir adsorption (or desorption) isotherms were used to simulate the equilibrium of desorption. The results indicate that the Freundlich equation shows better agreement with the experimental data than the Langmuir equation. The information thus obtained is useful for the better use of M-PVAC-IDA on the removal of heavy mental ions of Cu(II) from the Cu(II) ion-containing water solution with the consideration of its regeneration.


Journal of Hazardous Materials | 2009

Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed

Chia-Chi Chang; Chun-Yu Chiu; Ching-Yuan Chang; Chiung-Fen Chang; Yi-Hung Chen; Dar-Ren Ji; Jyi-Yeong Tseng; Yue-Hwa Yu

In this study, a high-gravity rotating packed bed (HGRPB or HG) was used as a catalytic ozonation (Cat-OZ) reactor to decompose phenol. The operation of HGRPB system was carried out in a semi-batch apparatus which combines two major parts, namely the rotating packed bed (RPB) and photo-reactor (PR). The high rotating speed of RPB can give a high volumetric gas-liquid mass transfer coefficient with one or two orders of magnitude higher than those in the conventional packed beds. The platinum-containing catalyst (Dash 220N, Pt/gamma-Al(2)O(3)) and activated alumina (gamma-Al(2)O(3)) were packed in the RPB respectively to adsorb molecular ozone and the target pollutant of phenol on the surface to catalyze the oxidation of phenol. An ultra violet (UV) lamp (applicable wavelength lambda=200-280 nm) was installed in the PR to enhance the self-decomposition of molecular ozone in water to form high reactive radical species. Different combinations of advanced oxidation processes (AOPs) with the HGRPB for the degradation of phenol were tested. These included high-gravity OZ (HG-OZ), HG catalytic OZ (HG-Cat-OZ), HG photolysis OZ (HG-UV-OZ) and HG-Cat-OZ with UV (HG-Cat-UV-OZ). The decomposition efficiency of total organic compound (eta(TOC)) of HG-UV-OZ with power of UV (P(UV)) of 16W is 54% at applied dosage of ozone per volume sample m(A,in)=1200 mg L(-1) (reaction time t=20 min), while that of HG-OZ without the UV irradiation is 24%. After 80 min oxidation (m(A,in)=4800 mg L(-1)), the eta(TOC) of HG-UV-OZ is as high as 94% compared to 82% of HG-OZ process. The values of eta(TOC) for HG-Cat-OZ process with m(S)=42 g are 56% and 87% at m(A,in)=1200 and 4800 mg L(-1), respectively. By increasing the catalyst mass to 77 g, the eta(TOC) for the HG-Cat-OZ process reaches 71% and 90% at m(A,in)=1200 and 4800 mg L(-1), respectively. The introduction of Pt/gamma-Al(2)O(3) as well as UV irradiation in the HG-OZ process can enhance the eta(TOC) of phenol significantly, while gamma-Al(2)O(3) exhibits no significant effect on eta(TOC). For the HG-Cat-UV-OZ process with m(S)=42 g, the values of eta(TOC) are 60% and 94% at m(A,in)=1200 and 4800 mg L(-1), respectively. Note that the decomposition of TOC via HG-UV-OZ is already vigorous. Thus, the enhancing effect of catalyst on eta(TOC) is minor.


Bioresource Technology | 2011

Co-pyrolysis of sunflower-oil cake with potassium carbonate and zinc oxide using plasma torch to produce bio-fuels

Je-Lueng Shie; Chia-Chi Chang; Ching-Yuan Chang; Chin-Ching Tzeng; Chung-Yu Wu; Kae-Long Lin; Jyi-Yeong Tseng; Min-Hao Yuan; Heng-Yi Li; Ching-Hui Kuo; Yuh-Jeng Yu; Lieh-Chih Chang

This study examined the effects of additives of potassium carbonate (K2CO3) and zinc oxide (ZnO) on the pyrolysis of waste sunflower-oil cake using a 60 kW pilot-scale plasma torch reactor. The major gaseous products were CO and H2. The productions of CO and CH4 increased while that of H2 decreased with the addition of K2CO3. The use of ZnO reduced while enhanced the formation of CO and H2, respectively. In order to match the appeal of resource reutilization, one can use the waste K2CO3 resulted from the sorption of CO2 with KOH in greenhouse gas control and the waste ZnO obtained from the melting process as additives for the co-pyrolysis of sunflower-oil cake, yielding fuels rich in CO and H2, respectively.


The Scientific World Journal | 2015

Adsorption Removal of Environmental Hormones of Dimethyl Phthalate Using Novel Magnetic Adsorbent.

Chia-Chi Chang; Jyi-Yeong Tseng; Dar-Ren Ji; Chun-Yu Chiu; De-Sheng Lu; Ching-Yuan Chang; Min-Hao Yuan; Chiung-Fen Chang; Chyow-San Chiou; Yi-Hung Chen; Je-Lueng Shie

Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.2, 26.0, and 43.2 emu g−1 with superparamagnetism, respectively. The average size of M-PVAL by number is 0.75 μm in micro size. Adsorption experiments include three cases: (1) adjustment of initial pH (pH0) of solution to 5, (2) no adjustment of pH0 with value in 6.04–6.64, and (3) adjusted pH0 = 7. The corresponding saturated amounts of adsorption of unimolecular layer of Langmuir isotherm are 4.01, 5.21, and 4.22 mg g−1, respectively. Values of heterogeneity factor of Freundlich isotherm are 2.59, 2.19, and 2.59 which are greater than 1, revealing the favorable adsorption of DMP/M-PVAL system. Values of adsorption activation energy per mole of Dubinin-Radushkevich isotherm are, respectively, of low values of 7.04, 6.48, and 7.19 kJ mol−1, indicating the natural occurring of the adsorption process studied. The tiny size of adsorbent makes the adsorption take place easily while its superparamagnetism is beneficial for the separation and recovery of micro adsorbent from liquid by applying magnetic field after completion of adsorption.


The Scientific World Journal | 2015

Decomposition and Mineralization of Dimethyl Phthalate in an Aqueous Solution by Wet Oxidation

Dar-Ren Ji; Chia-Chi Chang; Shih-Yun Chen; Chun-Yu Chiu; Jyi-Yeong Tseng; Ching-Yuan Chang; Chiung-Fen Chang; Sheng-Wei Chiang; Zang-Sie Hung; Je-Lueng Shie; Yi-Hung Chen; Min-Hao Yuan

Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected. The η DMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure P T, a higher P T provides more oxygen for the forward reaction with DMP, while overhigh P T increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested P T of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the η DMP and η TOC are 93 and 36%, respectively.


Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2007

Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(II) ion

Jyi-Yeong Tseng; Ching-Yuan Chang; Yi-Hung Chen; Chiung-Fen Chang; Pen-Chi Chiang


Journal of The Taiwan Institute of Chemical Engineers | 2013

Autoclaving treatment of wasted disposable bamboo chopsticks

Zang-Sie Hung; Chia-Chi Chang; Chungfang Ho Chang; Yi-Shiou Lin; Dar-Ren Ji; Ching-Yuan Chang; Jyi-Yeong Tseng; Sheng-Wei Chiang; Je-Lueng Shie; Yi-Hung Chen; Chun-Han Ko; Yuan-Shen Li


Journal of The Taiwan Institute of Chemical Engineers | 2012

Synthesis of alcohols and alkanes over potassium and vanadium promoted molybdenum carbides

Sheng-Wei Chiang; Chia-Chi Chang; Je-Lueng Shie; Ching-Yuan Chang; Dar-Ren Ji; Jyi-Yeong Tseng


Energies | 2012

Synthesis of Alcohols and Alkanes from CO and H2 over MoS2/γ-Al2O3 Catalyst in a Packed Bed with Continuous Flow

Sheng-Wei Chiang; Chia-Chi Chang; Je-Lueng Shie; Ching-Yuan Chang; Dar-Ren Ji; Jyi-Yeong Tseng; Chiung-Fen Chang; Yi-Hung Chen


Archive | 2010

WATER-ENHANCED REFORMING OF SYNGAS TO FUELS AND CHEMICALS IN A BATCH REACTOR

Je-Lueng Shie; Ching-Yuan Chang; Chin-Ching Tzeng; Pei-Yao Hung; Chia-Chi Chang; Sheng-Wei Chiang; Jyi-Yeong Tseng; Wen-Kai Tu; Min-Hao Yuan; Heng-Yi Li; Yuh-Jenq Yu

Collaboration


Dive into the Jyi-Yeong Tseng's collaboration.

Top Co-Authors

Avatar

Ching-Yuan Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chia-Chi Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Dar-Ren Ji

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yi-Hung Chen

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Je-Lueng Shie

National Ilan University

View shared research outputs
Top Co-Authors

Avatar

Chun-Yu Chiu

Lan Yang Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sheng-Wei Chiang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Min-Hao Yuan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wen-Kai Tu

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge