Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chizuru Ito is active.

Publication


Featured researches published by Chizuru Ito.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Lack of acrosome formation in mice lacking a Golgi protein, GOPC

Ryoji Yao; Chizuru Ito; Yasuko Natsume; Yoshinobu Sugitani; Hitomi Yamanaka; Shoji Kuretake; Kaoru Yanagida; Akira Sato; Kiyotaka Toshimori; Tetsuo Noda

The acrosome is a unique organelle that plays an important role at the site of sperm–zona pellucida binding during the fertilization process, and is lost in globozoospermia, an inherited infertility syndrome in humans. Although the acrosome is known to be derived from the Golgi apparatus, molecular mechanisms underlying acrosome formation are largely unknown. Here we show that Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), a recently identified Golgi-associated protein, is predominantly localized at the trans-Golgi region in round spermatids, and male mice in which GOPC has been disrupted are infertile with globozoospermia. The primary defect was the fragmentation of acrosomes in early round spermatids, and abnormal vesicles that failed to fuse to developing acrosomes were apparent. In later stages, nuclear malformation and an abnormal arrangement of mitochondria, which are also characteristic features of human globozoospermia, were observed. Interestingly, intracytoplasmic sperm injection (ICSI) of such malformed sperm into oocytes resulted in cleavage into blastocysts only when injected oocytes were activated. Thus, GOPC provides important clues to understanding the mechanisms underlying spermatogenesis, and the GOPC-deficient mouse may be a unique and valuable model for human globozoospermia.


Nature Genetics | 2004

Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta

Takahisa Nakamura; Ryoji Yao; Takehiko Ogawa; Toru Suzuki; Chizuru Ito; Naoki Tsunekawa; Kimiko Inoue; Rieko Ajima; Takashi Miyasaka; Yutaka Yoshida; Atsuo Ogura; Kiyotaka Toshimori; Toshiaki Noce; Tadashi Yamamoto; Tetsuo Noda

Spermatogenesis is a complex process that involves cooperation of germ cells and testicular somatic cells. Various genetic disorders lead to impaired spermatogenesis, defective sperm function and male infertility. Here we show that Cnot7−/− males are sterile owing to oligo-astheno-teratozoospermia, suggesting that Cnot7, a CCR4-associated transcriptional cofactor, is essential for spermatogenesis. Maturation of spermatids is unsynchronized and impaired in seminiferous tubules of Cnot7−/− mice. Transplantation of spermatogonial stem cells from male Cnot7−/− mice to seminiferous tubules of Kit mutant mice (KitW/W-v) restores spermatogenesis, suggesting that the function of testicular somatic cells is damaged in the Cnot7−/− condition. The testicular phenotypes of Cnot7−/− mice are similar to those of mice deficient in retinoid X receptor beta (Rxrb). We further show that Cnot7 binds the AF-1 domain of Rxrb and that Rxrb malfunctions in the absence of Cnot7. Therefore, Cnot7 seems to function as a coregulator of Rxrb in testicular somatic cells and is thus involved in spermatogenesis.


Molecular and Cellular Biology | 2003

Mouse germ cell-less as an essential component for nuclear integrity.

Tohru Kimura; Chizuru Ito; Shoko Watanabe; Tohru Takahashi; Masahito Ikawa; Kentaro Yomogida; Yukiko Fujita; Megumi Ikeuchi; Noriko Asada; Kiyomi Matsumiya; Akihiko Okuyama; Masaru Okabe; Kiyotaka Toshimori; Toru Nakano

ABSTRACT A mouse homologue of the Drosophila melanogaster germ cell-less (mgcl-1) gene is expressed ubiquitously, and its gene product is localized to the nuclear envelope based on its binding to LAP2β (lamina-associated polypeptide 2β). To elucidate the role of mgcl-1, we analyzed two mutant mouse lines that lacked mgcl-1 gene expression. Abnormal nuclear morphologies that were probably due to impaired nuclear envelope integrity were observed in the liver, exocrine pancreas, and testis. In particular, functional abnormalities were observed in testis in which the highest expression of mgcl-1 was detected. Fertility was significantly impaired in mgcl-1-null male mice, probably as a result of severe morphological abnormalities in the sperm. Electron microscopic observations showed insufficient chromatin condensation and abnormal acrosome structures in mgcl-1-null sperm. In addition, the expression patterns of transition proteins and protamines, both of which are essential for chromatin remodeling during spermatogenesis, were aberrant. Considering that the first abnormality during the process of spermatogenesis was abnormal nuclear envelope structure in spermatocytes, the mgcl-1 gene product appears to be essential for appropriate nuclear-lamina organization, which in turn is essential for normal sperm morphogenesis and chromatin remodeling.


Biology of Reproduction | 2007

Factors Maintaining Normal Sperm Tail Structure During Epididymal Maturation Studied in Gopc−/− Mice

Fumie Suzuki-Toyota; Chizuru Ito; Yoshiro Toyama; Mamiko Maekawa; Ryoji Yao; Tetsuo Noda; Hiroshi Iida; Kiyotaka Toshimori

Abstract Gopc (Golgi-associated PDZ- and coiled-coil motif-containing protein)−/− mice are infertile, showing globozoospermia, coiled tails, and a stratified mitochondrial sheath. Transmission electron microscope (TEM) images of the spermatozoa were studied quantitatively to analyze disorganization processes during epididymal passage. Factors maintaining straight tail and normal mitochondrial sheath were also studied by TEM and immunofluorescent microscopy. Sperm tails retained a normal appearance in the proximal caput epididymidis. Tail disorganization started between the proximal and the middle caput epididymidis, and the latter is the major site for it. The tail moved up through the defective posterior ring and coiled around the nucleus to various degrees. Tail coiling occurred in the caput epididymidis suggesting it was triggered by cytoplasmic droplet migration. SPATA19/spergen-1, a candidate mitochondrial adhesion protein, remained on the stratified mitochondria, while GPX4/PHGPx, a major element of the mitochondrial capsule, was unevenly distributed on them. From these findings, we speculate GPX4 is necessary to maintain normal sheath structure, and SPATA19 prevents dispersal of mitochondria, resulting in a stratified mitochondrial sheath formation in Gopc−/− spermatozoa. The epididymal epithelium was normal in structure and LRP8/apoER2 expression suggesting that tail abnormality is due to intrinsic sperm factors. Three cell structures are discussed as requisite factors for maintaining a straight tail during epididymal maturation: 1) a complete posterior ring to prevent invasion of the tail into the head compartment, 2) stable attachment of the connecting piece to the implantation fossa, and 3) a normal mitochondrial sheath supported by SPATA19 and supplied with sufficient and normally distributed GPX4.


Biology of Reproduction | 2009

Equatorin: Identification and Characterization of the Epitope of the MN9 Antibody in the Mouse

Kenji Yamatoya; Keiichi Yoshida; Chizuru Ito; Mamiko Maekawa; Mitsuaki Yanagida; Kenji Takamori; Hideoki Ogawa; Yoshihiko Araki; Kenji Miyado; Yoshiro Toyama; Kiyotaka Toshimori

Equatorin (MN9 antigenic molecule) is a widely distributed acrosomal protein in mammalian sperm. During the acrosome reaction, some amount of equatorin translocates to the plasma membrane, covering the equatorial region. From the results of studies of both in vitro and in vivo fertilization inhibition using the MN9 antibody, equatorin has been suggested to be involved in fusion with the oolemma. In the present study, we cloned equatorin and, using mass spectrometry and carbohydrate staining, found it to be a highly glycosylated protein. Equatorin is a sperm-specific type 1 transmembrane protein, and glycosidase treatment and recombinant protein assays verified that it is an N,O-sialoglycoprotein. In addition, the gamete interaction-related domain recognized by the MN9 antibody is posttranslationally modified. The modified domain was identified near threonine 138, which was most likely to be O-glycosylated when analyzed by amino acid substitution, dephosphorylation, and O-glycosylation inhibitor assays. Immunogold electron microscopy localized the equatorin N-terminus, where the MN9 epitope is present, on the acrosomal membrane facing the acrosomal lumen. These biochemical properties and the localization of equatorin are important for further analysis of the translocation mechanism leading to gamete interaction.


Reproduction | 2010

A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin

Keiichi Yoshida; Chizuru Ito; Kenji Yamatoya; Mamiko Maekawa; Yoshiro Toyama; Fumie Suzuki-Toyota; Kiyotaka Toshimori

It is important to establish a reliable and progressive model of the acrosome reaction. Here, we present a progression model of the acrosome reaction centering around the acrosomal membrane-anchored protein equatorin (MN9), comparing the staining pattern traced by MN9 antibody immunofluorescence with that traced by Arachis hypogaea agglutinin (PNA)-FITC. Prior to the acrosome reaction, equatorin was present in both the anterior acrosome and the equatorial segment. Since sperm on zona pellucida showed various staining patterns, MN9-immunostaining patterns were classified into four stages: initial, early, advanced, and final. As the acrosome reaction progressed from the initial to the early stage, equatorin spread from the peripheral region of the anterior acrosome toward the center of the equatorial segment, gradually over the entire region of the equatorial segment during the advanced stage, and finally uniformly at the equatorial segment at the final stage. In contrast, the PNA-FITC signals spread more quickly from the peripheral region of the acrosome toward the entire equatorial segment, while decreasing in staining intensity, and finally became weak at the final stage. MN9-immunogold electron microscopy showed equatorin on the hybrid vesicles surrounded by amorphous substances at advanced stage of acrosome reaction. Equatorin decreased in molecular mass from 40-60 to 35 kDa, and the signal intensity of 35 kDa equatorin increased as the acrosome reaction progressed. Thus, the established equatorin-based progression model will be useful for analyzing not only the behavior of equatorin but also of other molecules of interest involved in the acrosome reaction.


Journal of Biological Chemistry | 2008

Meichroacidin Containing the Membrane Occupation and Recognition Nexus Motif Is Essential for Spermatozoa Morphogenesis

Keizo Tokuhiro; Mika Hirose; Yasushi Miyagawa; Akira Tsujimura; Shinji Irie; Ayako Isotani; Masaru Okabe; Yoshiro Toyama; Chizuru Ito; Kiyotaka Toshimori; Ken Takeda; S. Oshio; Hitoshi Tainaka; Junji Tsuchida; Akihiko Okuyama; Yoshitake Nishimune; Hiromitsu Tanaka

Meichroacidin (MCA) is a highly hydrophilic protein that contains the membrane occupation and recognition nexus motif. MCA is expressed during the stages of spermatogenesis from pachytene spermatocytes to mature sperm development and is localized in the male meiotic metaphase chromosome and sperm flagellum. MCA sequences are highly conserved in Ciona intestinalis, Cyprinus carpio, and mammals. To investigate the physiological role of MCA, we generated MCA-disrupted mutant mice; homozygous MCA mutant males were infertile, but females were not. Sperm was rarely observed in the caput epididymidis of MCA mutant males. However, little to no difference was seen in testis mass between wild-type and mutant mice. During sperm morphogenesis, elongated spermatids had retarded flagellum formation and might increase phagocytosis by Sertoli cells. Immunohistochemical analysis revealed that MCA interacts with proteins located on the outer dense fibers of the flagellum. The testicular sperm of MCA mutant mice was capable of fertilizing eggs successfully via intracytoplasmic sperm injection and generated healthy progeny. Our results suggest that MCA is essential for sperm flagellum formation and the production of functional sperm.


PLOS Genetics | 2013

Tysnd1 Deficiency in Mice Interferes with the Peroxisomal Localization of PTS2 Enzymes, Causing Lipid Metabolic Abnormalities and Male Infertility

Yumi Mizuno; Yuichi Ninomiya; Yutaka Nakachi; Mioko Iseki; Hiroyasu Iwasa; Masumi Akita; Tohru Tsukui; Nobuyuki Shimozawa; Chizuru Ito; Kiyotaka Toshimori; Megumi Nishimukai; Hiroshi Hara; Ryouta Maeba; Tomoki Okazaki; Ali Al-Odaib; Mohammed Al Amoudi; Minnie Jacob; Fowzan S. Alkuraya; Yasushi Horai; Mitsuhiro Watanabe; Hiromi Motegi; Shigeharu Wakana; Tetsuo Noda; Igor V. Kurochkin; Yosuke Mizuno; Christian Schönbach; Yasushi Okazaki

Peroxisomes are subcellular organelles involved in lipid metabolic processes, including those of very-long-chain fatty acids and branched-chain fatty acids, among others. Peroxisome matrix proteins are synthesized in the cytoplasm. Targeting signals (PTS or peroxisomal targeting signal) at the C-terminus (PTS1) or N-terminus (PTS2) of peroxisomal matrix proteins mediate their import into the organelle. In the case of PTS2-containing proteins, the PTS2 signal is cleaved from the protein when transported into peroxisomes. The functional mechanism of PTS2 processing, however, is poorly understood. Previously we identified Tysnd1 (Trypsin domain containing 1) and biochemically characterized it as a peroxisomal cysteine endopeptidase that directly processes PTS2-containing prethiolase Acaa1 and PTS1-containing Acox1, Hsd17b4, and ScpX. The latter three enzymes are crucial components of the very-long-chain fatty acids β-oxidation pathway. To clarify the in vivo functions and physiological role of Tysnd1, we analyzed the phenotype of Tysnd1−/− mice. Male Tysnd1−/− mice are infertile, and the epididymal sperms lack the acrosomal cap. These phenotypic features are most likely the result of changes in the molecular species composition of choline and ethanolamine plasmalogens. Tysnd1−/− mice also developed liver dysfunctions when the phytanic acid precursor phytol was orally administered. Phyh and Agps are known PTS2-containing proteins, but were identified as novel Tysnd1 substrates. Loss of Tysnd1 interferes with the peroxisomal localization of Acaa1, Phyh, and Agps, which might cause the mild Zellweger syndrome spectrum-resembling phenotypes. Our data established that peroxisomal processing protease Tysnd1 is necessary to mediate the physiological functions of PTS2-containing substrates.


Human Reproduction | 2010

Appearance of an oocyte activation-related substance during spermatogenesis in mice and humans

Chizuru Ito; Kenji Yamatoya; Keiichi Yoshida; Koichi Kyono; Ryoji Yao; Tetsuo Noda; Kiyotaka Toshimori

BACKGROUND Recently we reported that an oocyte activation ability in human and mouse sperm is associated with head flatness or the presence of perinuclear theca (PT) substance, MN13, which is an oocyte activation-related protein localized on the post-acrosomal sheath (PAS). As such, we hypothesize that the appearance of oocyte activation ability is stage-specifically regulated and depends on the formation of the acrosome or PAS/PT in spermatids. METHODS We monitored the appearance and movement of MN13 as a PT-specific molecule during spermatogenesis and analysed how the MN13 localization is affected in mouse and human globozoospermic acrosomeless sperm. RESULTS MN13 was first detected on the surface of acrosomic vesicles, i.e. on the nascent outer acrosomal membrane of step 5-6 round spermatids (Sb1 spermatids in human), and it was then translocated via the outer acrosomal membrane surface to the most distal region of the acrosome in step 7 round spermatids (Sb2 spermatids). As spermatids elongated, MN13 was translocated via the cytoplasmic space between the nuclear envelope and the overlying plasma membrane towards the post-acrosomal region, and it was organized on the top of the nascent PAS that was typically found in step 14 elongated spermatids (Sd1 spermatids). In contrast, MN13 was not found in any GOPC-deficient spermatids, which completely lack the acrosome but have manchettes (microtubule bundles), nor in mouse and human acrosomeless sperm. CONCLUSIONS The MN13 appearance or the MN13-related PAS/PT formation is highly dependant on acrosome formation; the MN13-related oocyte activation factor/ability is stage-specifically acquired in elongating/elongated spermatids.


Fertility and Sterility | 2011

Birth of a healthy infant after intracytoplasmic sperm injection using pentoxifylline-activated sperm from a patient with Kartagener’s syndrome

H. Hattori; Y. Nakajo; Chizuru Ito; Yoshiro Toyama; Kiyotaka Toshimori; Koichi Kyono

OBJECTIVE To describe the delivery of a healthy female infant after intracytoplasmic sperm injection (ICSI) using pentoxifylline-activated sperm from a patient with Kartageners syndrome. DESIGN Case report. SETTING Private assisted reproductive technology clinic in Japan. PATIENT(S) A couple with male factor infertility due to Kartageners syndrome. INTERVENTION(S) Intracytoplasmic sperm injection using ejaculated sperm activated by pentoxifylline. MAIN OUTCOME MEASURE(S) Semen characteristics, sperm ultrastructure, fertilization, pregnancy, and birth after ICSI. RESULT(S) The fertilization rate was 7 of 12 (58.3%), and the blastocyst formation rate was 4 of 7 (57.1%); all blastocysts were vitrified. After a single blastcyst transfer, a pregnancy ensued and progressed to term; a healthy female infant was delivered. CONCLUSION(S) With ejaculated sperm, which was activated by pentoxifylline, successful fertilization was accomplished by ICSI; thus, fertilization, vitrification, pregnancy, and delivery are attainable with sperm obtained from men with Kartageners syndrome.

Collaboration


Dive into the Chizuru Ito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuo Noda

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryoji Yao

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge