Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenji Yamatoya is active.

Publication


Featured researches published by Kenji Yamatoya.


Biology of Reproduction | 2009

Equatorin: Identification and Characterization of the Epitope of the MN9 Antibody in the Mouse

Kenji Yamatoya; Keiichi Yoshida; Chizuru Ito; Mamiko Maekawa; Mitsuaki Yanagida; Kenji Takamori; Hideoki Ogawa; Yoshihiko Araki; Kenji Miyado; Yoshiro Toyama; Kiyotaka Toshimori

Equatorin (MN9 antigenic molecule) is a widely distributed acrosomal protein in mammalian sperm. During the acrosome reaction, some amount of equatorin translocates to the plasma membrane, covering the equatorial region. From the results of studies of both in vitro and in vivo fertilization inhibition using the MN9 antibody, equatorin has been suggested to be involved in fusion with the oolemma. In the present study, we cloned equatorin and, using mass spectrometry and carbohydrate staining, found it to be a highly glycosylated protein. Equatorin is a sperm-specific type 1 transmembrane protein, and glycosidase treatment and recombinant protein assays verified that it is an N,O-sialoglycoprotein. In addition, the gamete interaction-related domain recognized by the MN9 antibody is posttranslationally modified. The modified domain was identified near threonine 138, which was most likely to be O-glycosylated when analyzed by amino acid substitution, dephosphorylation, and O-glycosylation inhibitor assays. Immunogold electron microscopy localized the equatorin N-terminus, where the MN9 epitope is present, on the acrosomal membrane facing the acrosomal lumen. These biochemical properties and the localization of equatorin are important for further analysis of the translocation mechanism leading to gamete interaction.


Reproduction | 2010

A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin

Keiichi Yoshida; Chizuru Ito; Kenji Yamatoya; Mamiko Maekawa; Yoshiro Toyama; Fumie Suzuki-Toyota; Kiyotaka Toshimori

It is important to establish a reliable and progressive model of the acrosome reaction. Here, we present a progression model of the acrosome reaction centering around the acrosomal membrane-anchored protein equatorin (MN9), comparing the staining pattern traced by MN9 antibody immunofluorescence with that traced by Arachis hypogaea agglutinin (PNA)-FITC. Prior to the acrosome reaction, equatorin was present in both the anterior acrosome and the equatorial segment. Since sperm on zona pellucida showed various staining patterns, MN9-immunostaining patterns were classified into four stages: initial, early, advanced, and final. As the acrosome reaction progressed from the initial to the early stage, equatorin spread from the peripheral region of the anterior acrosome toward the center of the equatorial segment, gradually over the entire region of the equatorial segment during the advanced stage, and finally uniformly at the equatorial segment at the final stage. In contrast, the PNA-FITC signals spread more quickly from the peripheral region of the acrosome toward the entire equatorial segment, while decreasing in staining intensity, and finally became weak at the final stage. MN9-immunogold electron microscopy showed equatorin on the hybrid vesicles surrounded by amorphous substances at advanced stage of acrosome reaction. Equatorin decreased in molecular mass from 40-60 to 35 kDa, and the signal intensity of 35 kDa equatorin increased as the acrosome reaction progressed. Thus, the established equatorin-based progression model will be useful for analyzing not only the behavior of equatorin but also of other molecules of interest involved in the acrosome reaction.


Human Reproduction | 2010

Appearance of an oocyte activation-related substance during spermatogenesis in mice and humans

Chizuru Ito; Kenji Yamatoya; Keiichi Yoshida; Koichi Kyono; Ryoji Yao; Tetsuo Noda; Kiyotaka Toshimori

BACKGROUND Recently we reported that an oocyte activation ability in human and mouse sperm is associated with head flatness or the presence of perinuclear theca (PT) substance, MN13, which is an oocyte activation-related protein localized on the post-acrosomal sheath (PAS). As such, we hypothesize that the appearance of oocyte activation ability is stage-specifically regulated and depends on the formation of the acrosome or PAS/PT in spermatids. METHODS We monitored the appearance and movement of MN13 as a PT-specific molecule during spermatogenesis and analysed how the MN13 localization is affected in mouse and human globozoospermic acrosomeless sperm. RESULTS MN13 was first detected on the surface of acrosomic vesicles, i.e. on the nascent outer acrosomal membrane of step 5-6 round spermatids (Sb1 spermatids in human), and it was then translocated via the outer acrosomal membrane surface to the most distal region of the acrosome in step 7 round spermatids (Sb2 spermatids). As spermatids elongated, MN13 was translocated via the cytoplasmic space between the nuclear envelope and the overlying plasma membrane towards the post-acrosomal region, and it was organized on the top of the nascent PAS that was typically found in step 14 elongated spermatids (Sd1 spermatids). In contrast, MN13 was not found in any GOPC-deficient spermatids, which completely lack the acrosome but have manchettes (microtubule bundles), nor in mouse and human acrosomeless sperm. CONCLUSIONS The MN13 appearance or the MN13-related PAS/PT formation is highly dependant on acrosome formation; the MN13-related oocyte activation factor/ability is stage-specifically acquired in elongating/elongated spermatids.


Histochemistry and Cell Biology | 2013

Galnt3 deficiency disrupts acrosome formation and leads to oligoasthenoteratozoospermia

Toshihiro Miyazaki; Masako Mori; Carolina A. Yoshida; Chizuru Ito; Kenji Yamatoya; Takeshi Moriishi; Yosuke Kawai; Hisato Komori; Tetsuya Kawane; Shinichi Izumi; Kiyotaka Toshimori; Toshihisa Komori

Galnt3 belongs to the GalNAc transferase gene family involved in the initiation of mucin-type O-glycosylation. Male Galnt3-deficient (Galnt3−/−) mice were infertile, as previously reported by Ichikawa et al. (2009). To investigate the involvement of Galnt3 in spermatogenesis, we examined the differentiation of germ cells in Galnt3−/− mice. Galnt3 mRNA was most highly expressed in testis, and Galnt3 protein was localized in the cis-medial parts of the Golgi stacks of spermatocytes and spermatids in the seminiferous tubules. Spermatozoa in Galnt3−/− mice were rare and immotile, and most of them had deformed round heads. They exhibited abnormal acrosome and disturbed mitochondria arrangement in the flagella. At the cap phase, proacrosomal vesicles of various sizes, which had not coalesced to form a single acrosomal vesicle, were attached to the nucleus in Galnt3−/− mice. TUNEL-positive cells were increased in the seminiferous tubules. The binding of VVA lectin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), in the acrosomal regions of spermatids and spermatozoa in Galnt3−/− mice was drastically reduced. Equatorin is a N, O-sialoglycoprotein localized in the acrosomal membrane and is suggested to be involved in sperm–egg interaction. Immunohistochemical and Western blot analyses showed a drastic reduction in the reactivity with MN9 antibody, which recognizes the O-glycosylated moiety of equatorin and inhibits sperm–egg interaction. These findings indicate that deficiency of Galnt3 results in a severe reduction of mucin-type O-glycans in spermatids and causes impaired acrosome formation, leading to oligoasthenoteratozoospermia, and suggest that Galnt3 may also be involved in the process of fertilization through the O-glycosylation of equatorin.


PLOS Genetics | 2017

Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction.

Takashi Nakasuji; Narumi Ogonuki; Tomoki Chiba; Tomomi Kato; Kumiko Shiozawa; Kenji Yamatoya; Hiromitsu Tanaka; Tadashi Kondo; Kenji Miyado; Naoyuki Miyasaka; Toshiro Kubota; Atsuo Ogura; Hiroshi Asahara

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis of the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression were significantly deceased in spermatozoa of Zfy1/2-DKO mice compared with those of wild-type mice. These results are consistent with the phenotypic changes seen in the double-mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.


ACS Applied Materials & Interfaces | 2017

Selective Inactivation of Bacteriophage in the Presence of Bacteria by Use of Ground Rh-Doped SrTiO3 Photocatalyst and Visible Light

Yuichi Yamaguchi; Sho Usuki; Yoshihiro Kanai; Kenji Yamatoya; Norihiro Suzuki; Ken-ichi Katsumata; Chiaki Terashima; Tomonori Suzuki; Akira Fujishima; Hideki Sakai; Akihiko Kudo; Kazuya Nakata

Bacteriophage (denoted as phage) infection in the bacterial fermentation industry is a major problem, leading to the loss of fermented products such as alcohol and lactic acid. Currently, the prevention of phage infection is limited to biological approaches, which are difficult to apply in an industrial setting. Herein, we report an alternative chemical approach using ground Rh-doped SrTiO3 (denoted as g-STO:Rh) as a visible-light-driven photocatalyst. The g-STO:Rh showed selective inactivation of phage without bactericidal activity when irradiated with visible light (λ > 440 nm). After inactivation, the color of g-STO:Rh changed from gray to purple, suggesting that the Rh valence state partially changed from 3+ to 4+ induced by photocatalysis, as confirmed by diffuse reflectance spectroscopy. To study the effect of the Rh4+ ion on phage inactivation under visible-light irradiation, the survival rate of phage for g-STO:Rh was compared to that for ground Rh,Sb-codoped SrTiO3 (denoted as g-STO:Rh,Sb), where the change of Rh valence state from 3+ to 4+ is almost suppressed under visible-light irradiation due to charge compensation by the Sb5+ ion. Only g-STO:Rh effectively inactivated phage, which indicated that Rh4+ ion induced by photocatalysis particularly contributed to phage inactivation under visible-light irradiation. These results suggested that g-STO:Rh has potential as an antiphage material in bacterial fermentation.


Biochemical and Biophysical Research Communications | 2011

GalNAcβ1,3-linked paragloboside carries the epitope of a sperm maturation-related glycoprotein that is recognized by the monoclonal antibody MC121

Yohko U. Katagiri; Ban Sato; Kenji Yamatoya; Takao Taki; Naoko Goto-Inoue; Mitsutoshi Setou; Hajime Okita; Junichiro Fujimoto; Chizuru Ito; Kiyotaka Toshimori; Nobutaka Kiyokawa

The functional maturation of spermatozoa during epididymal transit in mammals accompanies the changes in their plasma membrane due to the binding or removal of proteins or interactions with the proteases, glycosidases and glycosyltransferases present in the epididymis. In order to study the surface changes in spermatozoa during their maturation in the epididymis, we previously established several monoclonal antibodies against the 54kDa sialoglycoprotein of mouse cauda epididymal spermatozoa, which gradually increased the expression of antigenic determinants during epididymal transit. One of these monoclonal antibodies, MC121, reacted with mouse sperm glycoproteins on a polyvinylidene fluoride membrane after desialylation of the glycoproteins, and the treatment of the desialylated sperm glycoproteins with β-N-acetylhexosaminidase greatly decreased the expression of the antigenic determinants. In addition to reacting with mouse cauda epididymal spermatozoa, MC121 reacted with human red blood cells (hRBCs). MC121 induced agglutination of sialidase-treated hRBCs and stained hRBCs fixed with formalin vapor much more heavily than it stained hRBCs fixed with methanol. The thin layer chromatography (TLC) immunostaining of the sialidase-treated lipids of hRBCs with MC121 suggested that the epitope-bearing molecule is a glycosphingolipids (GSL), and that MC121 reacts with a pentaose-GSL. Analysis of sialidase-treated GSLs by TLC-Blot-Matrix Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry (MALDI TOF MS) revealed that the GSL bound by MC121 was [HexNAc][HexNAc+Hex][Hex][Hex]-Cer. The lipid band stained with mAb TH2, which is specific for a GSL, GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-ceramide. These results indicated that the epitope to which MC121 binds is present in a neolacto-series GSL, IV³GalNAcβ-nLc₄Cer² sequence.


Asian Journal of Andrology | 2016

Interaction between basigin and monocarboxylate transporter 2 in the mouse testes and spermatozoa.

Cheng Chen; Mamiko Maekawa; Kenji Yamatoya; Masami Nozaki; Chizuru Ito; Toshihiko Iwanaga; Kiyotaka Toshimori

Basigin is a member of the immunoglobulin superfamily and plays various important roles in biological events including spermatogenesis. To examine the basigin molecular variants during spermatogenesis and sperm maturation in the mouse, immunoprecipitated basigin samples from testis and epididymal spermatozoa were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The results demonstrated that basigin molecules from the testis and spermatozoa were separable into two major bands and that the differences in the molecular sizes were possibly because of an endoproteolytic cleavage. Since basigin is known to be a chaperone for the monocarboxylate transporter 1 (MCT1), the localization of basigin, MCT1 and MCT2 was examined during postnatal testicular development. Immunohistochemical studies showed different expression patterns of MCT1 and MCT2. MCT1 was localized on the surface of spermatogonia, spermatocytes, and spermatids. In contrast, MCT2 appeared on the principal piece of spermatozoa in the testis, where basigin was also observed. In mature epididymal spermatozoa, MCT2 was located on the midpiece, where basigin co-localized with MCT2 but not with MCT1. Furthermore, MCT2 was immunoprecipitated with basigin in mouse testes and sperm. These results suggest that basigin has a functional role as a binding partner with MCT2 in testicular and epididymal spermatozoa.


Journal of Electron Microscopy | 2015

Analysis of the complexity of the sperm acrosomal membrane by super-resolution stimulated emission depletion microscopy compared with transmission electron microscopy

Chizuru Ito; Kenji Yamatoya; Kiyotaka Toshimori

The acrosome is a Golgi-derived sperm cell organelle enclosed by a continuous acrosomal membrane. The acrosomal membrane complexes with surrounding matrices containing molecules necessary for fertilization; however, the complex of acrosomal membrane and associating matrices (CAMAM) has not been visualized in detail under living conditions. Here, we analyzed the CAMAM at the nanometer level using super-resolution stimulated emission depletion (STED) fluorescence microscopy and equatorin-enhanced green fluorescent protein transgenic mice. The STED images were compared with the corresponding images taken by immunoelectron microscopy. Consequently, the substructure of CAMAM could be differentiated at nanometer-scale resolution by STED microscopy without the need for sectioning. The information obtained in this study will be beneficial not only for understanding the molecular mechanism of fertilization but also for cell imaging under living conditions.


Reproductive Medicine and Biology | 2011

One-step collagenase method for zona pellucida removal in unfertilized eggs: easy and gentle method for large-scale preparation

Kenji Yamatoya; Chizuru Ito; Motoyuki Araki; Ryoji Furuse; Kiyotaka Toshimori

PurposeZona pellucida (ZP)-free eggs are often used for studies such as evaluating the interaction of sperm-oolemma. To acquire ZP-free eggs, the most commonly used methods employ acidified Tyrode’s solution, enzymatic digestion with a trypsin-like enzyme, or mechanical methods using micropipettes. However, acidified Tyrode’s solution and trypsin-like enzymes often damage the oolemma, especially when many eggs are treated at once for mass sample analyses. The mechanical method requires skill, and it is time-consuming to prepare many ZP-free eggs. Therefore, in this study, to establish an easy, reliable method for preparing ZP-free eggs, we examined the ZP digestion method originally reported by Zuccotti et al. (J Reprod Fertil 93:515–520, 1991) that uses collagenase.MethodsMouse unfertilized eggs were treated with collagenase and acidified Tyrode’s solution to compare the ZP-free rates, the effect on the oolemma, and the two-cell development rates of ZP-free eggs by in vitro fertilization. The effects on the oolemma were gauged by observing the polarity of the transmembrane protein localization of enhanced green fluorescence protein tagged CD9 protein (CD9-EGFP) and using differential interference contrast microscopy.ResultsCollagenase removed the ZP and the cumulus cells from the cumulus oocyte complex. The collagenase method had no influence on the localization of CD9-EGFP, resulting in a high two-cell development rate. Additionally, the collagenase method could exclude low quality eggs with hardened ZP, since collagenase could not digest the hardened ZP.ConclusionsThe one-step collagenase method is an easy preparation method for large numbers of high-quality ZP-free eggs.

Collaboration


Dive into the Kenji Yamatoya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuya Nakata

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mami Miyado

The Nippon Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge