Chog Barugkin
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chog Barugkin.
Energy and Environmental Science | 2017
Jun Peng; Yiliang Wu; Wang Ye; Daniel Jacobs; Heping Shen; Xiao Fu; Yimao Wan; Nandi Wu; Chog Barugkin; Hieu T. Nguyen; Dingyong Zhong; Juntao Li; Teng Lu; Yun Liu; Mark N. Lockrey; Klaus Weber; Kylie R. Catchpole; Thomas P. White
Interfacial carrier recombination is one of the dominant loss mechanisms in high efficiency perovskite solar cells, and has also been linked to hysteresis and slow transient responses in these cells. Here we demonstrate an ultrathin passivation layer consisting of a PMMA:PCBM mixture that can effectively passivate defects at or near to the perovskite/TiO2 interface, significantly suppressing interfacial recombination. The passivation layer increases the open circuit voltage of mixed-cation perovskite cells by as much as 80 mV, with champion cells achieving Voc ∼ 1.18 V. As a result, we obtain efficient and stable perovskite solar cells with a steady-state PCE of 20.4% and negligible hysteresis over a large range of scan rates. In addition, we show that the passivated cells exhibit very fast current and voltage response times of less than 3 s under cyclic illumination. This new passivation approach addresses one of the key limitations of current perovskite cells, and paves the way to further efficiency gains through interface engineering.
Journal of Physical Chemistry Letters | 2015
Chog Barugkin; Jinjin Cong; Shakir Rahman; Hieu T. Nguyen; Daniel Macdonald; Thomas P. White; Kylie R. Catchpole
Spectrally resolved photoluminescence is used to measure the band-to-band absorption coefficient α(BB)(ℏω) of organic-inorganic hybrid perovskite methylammonium lead iodide (CH₃NH₃PbI₃) films from 675 to 1400 nm. Unlike other methods used to extract the absorption coefficient, photoluminescence is only affected by band-to-band absorption and is capable of detecting absorption events at very low energy levels. Absorption coefficients as low as 10⁻¹⁴ cm⁻¹ are detected at room temperature for long wavelengths, which is 14 orders of magnitude lower than reported values at shorter wavelengths. The temperature dependence of α(BB)(ℏω) is calculated from the photoluminescence spectra of CH₃NH₃PbI₃ in the temperature range 80-360 K. Based on the temperature-dependent α(BB)(ℏω), the product of the radiative recombination coefficient and square of the intrinsic carrier density, B(T) × n(i)², is also obtained.
IEEE Journal of Photovoltaics | 2015
Fiacre Rougieux; Nicholas E. Grant; Chog Barugkin; Daniel Macdonald; John D. Murphy
A recombination active defect is found in as-grown high-purity floating zone n-type silicon wafers containing grown-in nitrogen. In order to identify the properties of the defect, injection-dependent minority carrier lifetime measurements, secondary ion mass spectroscopy measurements, and photoluminescence lifetime imaging are performed. The lateral recombination center distribution varies greatly in a radially symmetric way, while the nitrogen concentration remains constant. The defect is shown to be deactivated through high temperature annealing and hydrogenation. We suggest that a nitrogen-intrinsic point defect complex may be responsible for the observed recombination.
Optics Express | 2015
Chog Barugkin; Thomas Allen; Teck Kong Chong; Thomas P. White; Klaus Weber; Kylie R. Catchpole
The band-to-band absorption enhancement due to various types of light trapping structures is studied experimentally with photoluminescence (PL) on monocrystalline silicon wafers. Four basic light trapping structures are examined: reactive ion etched texture (RIE), metal-assisted etched texture (MET), random pyramid texture (RAN) and plasmonic Ag nanoparticles with a diffusive reflector (Ag/DR). We also compare two novel combined structures of front side RIE/rear side RAN and front side RIE/rear side Ag/DR. The use of photoluminescence allows us to measure the absorption due to band-to-band transitions only, and excludes parasitic absorption from free carriers and other sources. The measured absorptance spectra are used to calculate the maximum generation current for each structure, and the light trapping efficiency is compared to a recently-proposed figure of merit. The results show that by combining RIE with RAN and Ag/DR, we can fabricate two structures with excellent light trapping efficiencies of 55% and 52% respectively, which is well above previously reported values for similar wafer thicknesses. A comparison of the measured band-band absorption and the EQE of back-contact silicon solar cells demonstrates that PL extracted absorption provides a very good indication of long wavelength performance for high efficiency silicon solar cells.
Energy and Environmental Science | 2017
Yiliang Wu; Di Yan; Jun Peng; Yimao Wan; Sieu Pheng Phang; Heping Shen; Nandi Wu; Chog Barugkin; Xiao Fu; Sachin Surve; Dale Grant; Daniel Walter; Thomas P. White; Kylie R. Catchpole; Klaus Weber
Crystalline silicon (c-Si) solar cells featuring a high-temperature processed homojunction have dominated the photovoltaic industry for decades, with a global market share of around 93%. Integrating commercially available crystalline silicon solar cells with high-efficiency perovskite solar cells is a viable pathway to increase the power conversion efficiency, and hence achieve low levelized electricity costs for the photovoltaic systems. However, the fabrication process for this type of cell is challenging due to the many, and often conflicting, material processing requirements and limitations. Here, we present an innovative design for a monolithic perovskite/silicon tandem solar cell, featuring a mesoscopic perovskite top subcell and a high-temperature tolerant homojunction c-Si bottom subcell. The improved temperature tolerance of the c-Si bottom cell permits significantly increased flexibility in the design and fabrication of the perovskite cell. We demonstrate an efficiency of 22.5% (steady-state) and a Voc of 1.75 V on a 1 cm2 cell. The method developed in this work opens up new possibilities in designing, fabricating and commercialising low-cost high-efficiency perovskite/c-Si tandem solar cells.
ACS Applied Materials & Interfaces | 2017
Heping Shen; Yiliang Wu; Jun Peng; Xiao Fu; Chog Barugkin; Thomas P. White; Klaus Weber; Kylie R. Catchpole
With rapid progress in recent years, organohalide perovskite solar cells (PSC) are promising candidates for a new generation of highly efficient thin-film photovoltaic technologies, for which up-scaling is an essential step toward commercialization. In this work, we propose a modified two-step method to deposit the CH3NH3PbI3 (MAPbI3) perovskite film that improves the uniformity, photovoltaic performance, and repeatability of large-area perovskite solar cells. This method is based on the commonly used two-step method, with one additional process involving treating the perovskite film with concentrated methylammonium iodide (MAI) solution. This additional treatment is proved to be helpful for tailoring the residual PbI2 level to an optimal range that is favorable for both optical absorption and inhibition of recombination. Scanning electron microscopy and photoluminescence image analysis further reveal that, compared to the standard two-step and one-step methods, this method is very robust for achieving uniform and pinhole-free large-area films. This is validated by the photovoltaic performance of the prototype devices with an active area of 1 cm2, where we achieved the champion efficiency of ∼14.5% and an average efficiency of ∼13.5%, with excellent reproducibility.
photovoltaic specialists conference | 2013
Chog Barugkin; Ngwe-Soe Zin; Kylie R. Catchpole
We demonstrate enhanced absorption in silicon wafers when plasmonic nanoparticles are added to a conventional rear contact structure. A rear side light trapping with plasmonic nanoparticles and various thicknesses of Si3N4 layer is studied and compared to a structure with combined plasmonics and diffused paint. Photoluminescence is applied to extract the absorptivity in order to exclude free carrier and parasitic absorption. Modeling shows that the absorption within a cell structure with plasmonic nanoparticles and optimum capping layer is expected to be enhanced by 53% of value for an ideal Lambertian reflector.
Small | 2018
Hongjun Chen; Meng Zhang; Renheng Bo; Chog Barugkin; Jianghui Zheng; Qingshan Ma; Shujuan Huang; Anita Ho-Baillie; Kylie R. Catchpole; Antonio Tricoli
Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine.
International Journal of Photoenergy | 2016
Chog Barugkin; Ulrich W. Paetzold; Kylie R. Catchpole; Angelika Basch; R. Carius
We report on the prototyping and development of a highly reflective dielectric back reflector for application in thin-film solar cells. The back reflector is fabricated by Snow Globe Coating (SGC), an innovative, simple, and cheap process to deposit a uniform layer of TiO2 particles which shows remarkably high reflectance over a broad spectrum (average reflectance of 99% from 500 nm to 1100 nm). We apply the highly reflective back reflector to tandem thin-film silicon solar cells and compare its performance with conventional ZnO:Al/Ag reflector. By using SGC back reflector, an enhancement of 0.5 mA/cm2 in external quantum efficiency of the bottom solar cell and an absolute value of 0.2% enhancement in overall power conversion efficiency are achieved. We also show that the increase in power conversion efficiency is due to the reduction of parasitic absorption at the back contact; that is, the use of the dielectric reflector avoids plasmonic losses at the reference ZnO:Al/Ag back reflector. The Snow Globe Coating process is compatible with other types of solar cells such as crystalline silicon, III–V, and organic photovoltaics. Due to its cost effectiveness, stability, and excellent reflectivity above a wavelength of 400 nm, it has high potential to be applied in industry.
photovoltaic specialists conference | 2014
Ngwe Soe Zin; Andrew Blakers; Evan Franklin; Kean Fong; Teng Kho; Chog Barugkin; Er-Chien Wang
The process of making Interdigitated Back Contact (IBC) solar cell is implemented by a novel simplified etch-back technique, while aiming for no compromise on high-efficiency potentials. Simplified etch-back creates localized heavy and light phosphorus and boron diffusions simultaneously. This process also leaves localised heavy diffusions to be approximately a micron higher than neighbouring light diffusion regions. In comparison to the IBC solar cells that ANU developed to date [1], key advantages of this technique feature reduction in cell process steps; requires only two diffusions to create p, p+, n and n+ diffusions; no high-temperature oxidation masking steps required as diffusion barriers; independent optimization of contact recombination, lateral carriers transport and surface passivation; and potential higher silicon bulk lifetime and reduced contamination due to low thermal budget. Based on the etch-back technique, the total saturation current density deduced from the test structures for the IBC cell is below 30 fA/cm2.