Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chon-Seng Tan is active.

Publication


Featured researches published by Chon-Seng Tan.


Analytical Biochemistry | 1988

Acidimetric assay for phospholipase A using egg yolk suspension as substrate

Nget Hong Tan; Chon-Seng Tan

A convenient acidimetric assay for phospholipase A using egg yolk suspension as substrate has been developed. The substrate mixture consists of 1 part egg yolk, 1 part 8.1 mM sodium deoxycholate, and 1 part 18 mM calcium chloride. Phospholipase A activity is measured by following the initial rate of pH change, which is linear between pH 8.0 and 7.75 and is proportional to enzyme concentration over a wide range. The assay is highly reproducible, with a coefficient of variation of 3%, and as sensitive as most established assays for phospholipase A. The assay uses inexpensive and easily available substrate and is simple to perform. It is particularly useful for monitoring phospholipase A activity in chromatography fractions.


Journal of the Science of Food and Agriculture | 2013

Nutrient composition, antioxidant properties, and anti‐proliferative activity of Lignosus rhinocerus Cooke sclerotium

Yeannie Hy Yap; Nget Hong Tan; Shin Yee Fung; Azlina Abdul Aziz; Chon-Seng Tan; Szu-Ting Ng

BACKGROUND Lignosus rhinocerus (tiger milk mushroom) is an important medicinal mushroom used in Southeast Asia and China, and its sclerotium can be developed into functional food/nutraceuticals. The nutrient composition, antioxidant properties, and anti-proliferative activity of wild type and a cultivated strain of L. rhinocerus sclerotia were investigated. RESULTS The sclerotial powder has high carbohydrate but low fat content. Interestingly, the cultivated strain contains higher amounts of protein and water-soluble substances than the wild type. Phenolic content of hot-water, cold-water, and methanol extracts of the sclerotial powders ranged from 19.32 to 29.42 mg gallic acid equivalents g⁻¹ extract, while the ferric reducing antioxidant power values ranged from 0.006 to 0.016 mmol min⁻¹ g⁻¹ extract. The DPPH• , ABTS•⁺ , and superoxide anion radical scavenging activities of the extracts ranged from 0.52 to 1.12, 0.05 to 0.20, and -0.98 to 11.23 mmol Trolox equivalents g⁻¹ extract, respectively. Both strains exhibited strong superoxide anion radical scavenging activity comparable to rutin. The cold-water extracts exhibited anti-proliferative activity against human breast carcinoma (MCF-7) cells, with IC₅₀ values of 206 µg mL⁻¹ and 90 µg mL⁻¹ for the wild type and cultivated strains, respectively. CONCLUSION The cultivated L. rhinocerus sclerotium has the potential to be developed into functional food/nutraceuticals.


Toxicon | 1989

The enzymatic activities and lethal toxins of Trimeresurus wagleri (speckled pit viper) venom

Nget Hong Tan; Chon-Seng Tan

Trimeresurus wagleri (speckled pit viper) venom exhibited the usual set of enzyme activities occurring in pit viper venoms but the content of alkaline phosphomonoesterase was unusually high, whereas the proportions of protease and arginine ester hydrolase were very low. The venom also exhibited weak thrombin-like activity but did not exhibit hemorrhagic or anticoagulant activity. Analysis of the Sephadex G-200 gel filtration fractions of the venom indicated that the lethal fraction was a low mol.wt protein, and that fractions exhibiting phosphodiesterase, phosphomonoesterase, arginine ester hydrolase, thrombin-like enzyme, L-amino acid oxidase and phospholipase A activities were not lethal. Two lethal toxins, designated as wagleri toxins 1 and 2, were isolated from the venom using Sephadex G-50 gel filtration chromatography followed by SP-Sephadex C-25 ion exchange chromatography. The mol.wts of the two toxins were 8900 by gel filtration. The LD50 (i.v.) values in mice for wagleri toxins 1 and 2 are 0.17 microgram/g and 0.19 microgram/g, respectively.


International Journal of Medical Sciences | 2015

Genome-based Proteomic Analysis of Lignosus rhinocerotis (Cooke) Ryvarden Sclerotium

Hui-Yeng Y. Yap; Shin Yee Fung; Szu-Ting Ng; Chon-Seng Tan; Nget Hong Tan

Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.


Journal of Ethnopharmacology | 2015

Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium.

Hui-Yeng Y. Yap; Shin Yee Fung; Szu-Ting Ng; Chon-Seng Tan; Nget Hong Tan

ETHNOPHARMACOLOGICAL RELEVANCE The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has been traditionally used as a complementary and alternative medicine for cancer treatment by the local communities of Southeast Asia. Despite the continuous research interest in its antiproliferative activity, the identity of the bioactive compound(s) responsible has yet to be determined. This study aims to bridge the gap in existing research literature by using proteomics approach for investigation of the nature of the anticancer substance of L. rhinocerotis. AIM OF THE STUDY To elucidate the proteome of L. rhinocerotis TM02 sclerotium by protein mass spectrometry and to further isolate and identify the cytotoxic component(s) bearing anticancer potential. MATERIALS AND METHODS The proteome of L. rhinocerotis sclerotium was analyzed by label-free quantitative shotgun proteomics, using 1D-SDS-PAGE coupled with nano-ESI-LC-MS/MS based on the availability of its genome-sequence database. The cytotoxicity of L. rhinocerotis sclerotial extracts against human breast adenocarcinoma cells (MCF7) were assessed by MTT cytotoxicity assay prior to successive purification steps by a combination of gel filtration chromatography, ammonium sulfate precipitation, and anion exchange chromatography. Bioactive compound(s) in the extracts was identified by shotgun proteomics and N-terminal protein sequencing. RESULTS Several proteins with interesting biological activities including lectins, fungal immunomodulatory proteins, and several antioxidant proteins were identified from the proteome of L. rhinocerotis. A cytotoxic protein fraction (termed F5) which was partially purified from its sclerotial cold water extract F5 shows two distinct bands of 31 and 36 kDa in reducing SDS-PAGE and exhibited potent selective cytotoxicity against MCF7 cells with IC50 value of 3.00 ± 1.01 μg/ml. Both bands were identified to be serine protease by LC-MS/MS analysis. Phenylmethylsulfonyl fluoride, a specific serine protease inhibitor, inhibited both the proteolytic activity and cytotoxicity of F5, suggesting that the cytotoxicity of F5 is related to its protease activity. CONCLUSIONS This study provides the first comprehensive and semi-quantitative profiling of the proteome of L. rhinocerotis sclerotium. Further investigation into its selective cytotoxicity shows that a serine protease-like protein, termed F5, may be targeted for new anticancer agent development.


Scientific Reports | 2016

Characterisation of a New Fungal Immunomodulatory Protein from Tiger Milk mushroom, Lignosus rhinocerotis

V. Pushparajah; A. Fatima; C. H. Chong; T. Z. Gambule; C. J. Chan; Szu-Ting Ng; Chon-Seng Tan; Shin Yee Fung; Sook Shien Lee; Nget Hong Tan; R. L. H. Lim

Lignosus rhinocerotis (Tiger milk mushroom) is an important folk medicine for indigenous peoples in Southeast Asia. We previously reported its de novo assembled 34.3 Mb genome encoding a repertoire of proteins including a putative bioactive fungal immunomodulatory protein. Here we report the cDNA of this new member (FIP-Lrh) with a homology range of 54–64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum. The FIP-Lrh of 112 amino acids (12.59 kDa) has a relatively hydrophobic N-terminal. Its predicted 3-dimensional model has identical folding patterns to FIP-fve and contains a partially conserved and more positively charged carbohydrates binding pocket. Docking predictions of FIP-Lrh on 14 glycans commonly found on cellular surfaces showed the best binding energy of −3.98 kcal/mol to N-acetylgalactosamine and N-acetylglucosamine. Overexpression of a 14.9 kDa soluble 6xHisFIP-Lrh was achieved in pET-28a(+)/BL21 and the purified recombinant protein was sequence verified by LC-MS/MS (QTOF) analysis. The ability to haemagglutinate both mouse and human blood at concentration ≥0.34 μM, further demonstrated its lectin nature. In addition, the cytotoxic effect of 6xHisFIP-Lrh on MCF-7, HeLa and A549 cancer cell lines was detected at IC50 of 0.34 μM, 0.58 μM and 0.60 μM, respectively.


Toxicon | 1988

Partial purification of acetylcholinesterase from the venom of the shore pit viper (Trimeresurus purpureomaculatus).

Nget Hong Tan; Chon-Seng Tan

Trimeresurus purpureomaculatus venom acetylcholinesterase has been partially purified by Sephadex G-200 gel filtration chromatography and DEAE Sephacel ion exchange chromatography. The enzyme has a mol. wt of 58,600. It was strongly inhibited by physostigmine salicylate and edrophonium chloride and exhibited substrate inhibition at high substrate concentration. The content of acetylcholinesterase in Trimeresurus purpureomaculatus venom was estimated to be much less than 0.3%.


International Journal of Medical Sciences | 2014

Energy and Nutritional Composition of Tiger Milk Mushroom (Lignosus tigris Chon S. Tan) Sclerotia and the Antioxidant Activity of Its Extracts

Hui-Yeng Y. Yap; Azlina Abdul Aziz; Shin Yee Fung; Szu-Ting Ng; Chon-Seng Tan; Nget Hong Tan

The Lignosus is a genus of fungi that have useful medicinal properties. In Southeast Asia, three species of Lignosus (locally known collectively as Tiger milk mushrooms) have been reported including L. tigris, L. rhinocerotis, and L. cameronensis. All three have been used as important medicinal mushrooms by the natives of Peninsular Malaysia. In this work, the nutritional composition and antioxidant activities of the wild type and a cultivated strain of L. tigris sclerotial extracts were investigated. The sclerotia are rich in carbohydrates with moderate amount of protein and low fat content. Free radical scavenging activities of L. tigris sclerotial extracts correlate with their phenolic content, which ranges from 6.25 to 45.42 mg GAE/g extract. The FRAP values ranged from 0.002 to 0.041 mmol/min/g extract, while the DPPH•, ABTS•+, and superoxide anion (SOA) scavenging activities ranged from 0.18 to 2.53, 0.01 to 0.36, and -4.53 to 10.05 mmol Trolox equivalents/g extract, respectively. L. tigris cultivar shows good prospect to be developed into functional food due to its good nutritional value and potent SOA scavenging activity.


PLOS ONE | 2015

Transcriptome analysis revealed highly expressed genes encoding secondary metabolite pathways and small cysteine-rich proteins in the sclerotium of lignosus rhinocerotis

Hui-Yeng Y. Yap; Yit-Heng Chooi; Shin Yee Fung; Szu-Ting Ng; Chon-Seng Tan; Nget Hong Tan

Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.


Nutrition Research | 2016

Nutritional composition, antioxidant properties, and toxicology evaluation of the sclerotium of Tiger Milk Mushroom Lignosus tigris cultivar E

Boon-Hong Kong; Nget Hong Tan; Shin Yee Fung; Jayalakshmi Pailoor; Chon-Seng Tan; Szu-Ting Ng

The Tiger Milk Mushroom (Lignosus spp.) is an important medicinal mushroom in Southeast Asia and has been consumed frequently by the natives as a cure for a variety of illnesses. In this study, we hypothesized that Lignosus tigris (cultivar E) sclerotium may contain high nutritional value and antioxidant properties, is nontoxic and a potential candidate as a dietary supplement. The chemical and amino acid compositions of the sclerotium were evaluated and antioxidant activities of the sclerotial extracts were assessed using ferric reducing antioxidant power; 1,1-diphenyl-2-picrylhydrazyl; and superoxide anion radical scavenging assays. Acute toxicity of the L. tigris E sclerotium was assessed using a rat model study. The sclerotium was found to be rich in carbohydrate, protein, and dietary fibers with small amounts of fat, calories, and sugar. The amino acid composition of the protein contains all essential amino acids, with a protein score of 47. The sclerotial extracts contain phenolics, terpenoids, and glucan. The ferric reducing antioxidant power values of the various sclerotial extracts (hot water, cold water, and methanol) ranged from 0.008 to 0.015 mmol min(-1) g(-1) extract, while the 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radical scavenging activities ranged from 0.11 to 0.13, and -2.81 to 9.613 mmol Trolox equivalents g(-1) extract, respectively. Acute toxicity assessment indicated that L. tigris E sclerotial powder was not toxic at the dose of 2000 mg kg(-1). In conclusion, L. tigris E sclerotium has the potential to be developed into a functional food and nutraceutical.

Collaboration


Dive into the Chon-Seng Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yit-Heng Chooi

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge