Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shin Yee Fung is active.

Publication


Featured researches published by Shin Yee Fung.


Journal of Proteomics | 2015

Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia

Kae Yi Tan; Choo Hock Tan; Shin Yee Fung; Nget Hong Tan

UNLABELLED Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. BIOLOGICAL SIGNIFICANCE Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to geographical region seems possible, changes to standard recommended dosage should only be made if further study validates that the monocled cobras within a population do not exhibit remarkable inter-individual venom variation.


Evidence-based Complementary and Alternative Medicine | 2012

The Antiproliferative Activity of Sclerotia of Lignosus rhinocerus (Tiger Milk Mushroom)

M. L. Lee; Nget Hong Tan; Shin Yee Fung; C. S. Tan; S. T. Ng

Lignosus rhinocerus, the tiger milk mushroom, is one of the most important medicinal mushrooms used by the indigenous people of Southeast Asia and China. It has been used to treat breast cancer. A cold water extract (LR-CW) prepared from the sclerotia of L. rhinocerus cultivar was found to exhibit antiproliferative activity against human breast carcinoma (MCF-7) and human lung carcinoma (A549), with IC50 of 96.7 μg/mL and 466.7 μg/mL, respectively. In comparison, LR-CW did not show significant cytotoxicity against the two corresponding human normal cells, 184B5 (human breast cell) and NL 20 (human lung cell). DNA fragmentation studies suggested that the cytotoxic action of LR-CW against cancer cells is mediated by apoptosis. Sephadex G-50 gel filtration fractionation of LR-CW yielded a high-molecular-weight and a low-molecular-weight fraction. The high-molecular-weight fraction contains mainly carbohydrate (68.7%) and small amount of protein (3.6%), whereas the low-molecular-weight fraction contains 31% carbohydrate and was devoid of protein. Only the high-molecular-weight fraction exhibited antiproliferative activity against cancer cells, with IC50 of 70.0 μg/mL and 76.7 μg/mL, respectively. Thus, the cytotoxic action of the LR-CW is due to the high-molecular-weight fraction, either the proteins or protein-carbohydrate complex.


Journal of Ethnopharmacology | 2009

The protective effect of Mucuna pruriens seeds against snake venom poisoning.

Nget Hong Tan; Shin Yee Fung; Si Mui Sim; Enrico Marinello; Roberto Guerranti; John C. Aguiyi

ETHNOPHARMACOLOGICAL RELEVANCE The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite. AIM OF THE STUDY To study the protective effects of Mucuna pruriens seed extract against the lethalities of various snake venoms. MATERIALS AND METHODS Rats were pre-treated with Mucuna pruriens seed extract and challenged with various snake venoms. The effectiveness of anti-Mucuna pruriens (anti-MPE) antibody to neutralize the lethalities of snake venoms was investigated by in vitro neutralization. RESULTS In rats, MPE pre-treatment conferred effective protection against lethality of Naja sputatrix venom and moderate protection against Calloselasma rhodostoma venom. Indirect ELISA and immunoblotting studies showed that there were extensive cross-reactions between anti-MPE IgG and venoms from many different genera of poisonous snakes, suggesting the involvement of immunological neutralization in the protective effect of MPE pre-treatment against snake venom poisoning. In vitro neutralization experiments showed that the anti-MPE antibodies effectively neutralized the lethalities of Asiatic cobra (Naja) venoms, but were not very effective against other venoms tested. CONCLUSIONS The anti-MPE antibodies could be used in the antiserum therapy of Asiatic cobra (Naja) bites.


BMC Genomics | 2015

Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah)

Choo Hock Tan; Kae Yi Tan; Shin Yee Fung; Nget Hong Tan

BackgroundThe king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.ResultsTranscriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5’-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5’-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey.ConclusionThis study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2011

Antibacterial action of a heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom

Mui Li Lee; Nget Hong Tan; Shin Yee Fung; Shamala Devi Sekaran

The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.


Acta Tropica | 2011

Cross neutralization of Hypnale hypnale (hump-nosed pit viper) venom by polyvalent and monovalent Malayan pit viper antivenoms in vitro and in a rodent model

Choo Hock Tan; Poh Kuan Leong; Shin Yee Fung; Si Mui Sim; Gnanajothy Ponnudurai; Christeine Ariaratnam; Sumana Khomvilai; Visith Sitprija; Nget Hong Tan

Hypnale hypnale (hump-nosed pit viper) is a medically important venomous snake in Sri Lanka and Southwestern India. Bite of this snake may result in hemostatic dysfunction, acute kidney injury and death. Clinical studies indicated that the locally available polyvalent antivenoms produced in India are not effective against hump-nosed pit viper envenoming. Hence, there is an urgent need to search for effective antivenom. In this paper, we examined the ability of Calloselasma rhodostoma (Malayan pit viper) monovalent antivenom and the Hemato polyvalent antivenom (both produced by Thai Red Cross Society, TRCS) to neutralize the lethality and toxic effects of H. hypnale venom, as C. rhodostoma is considered a sister taxon of H. hypnale. In vitro neutralization studies showed that the Hemato polyvalent antivenom effectively neutralized the lethality of H. hypnale venom (1.52mgvenom/mL antivenom) as well as the hemorrhagic, procoagulant and necrotic activities of the venom. The monovalent C. rhodostoma antivenom could also neutralize the lethality and toxic activities of the venom, but the potency was lower. The Hemato polyvalent antivenom also effectively protected mice from the lethal and local effects of H. hypnale venom in an in vivo rodent model of envenoming. Furthermore, the polyvalent antivenom could also effectively neutralize the venom of Daboia russelii (2.50mgvenom/mL antivenom), another common cause of snake bites in Sri Lanka and South India. These findings suggested that the Hemato polyvalent antivenom may be beneficial in the antivenom treatment of H. hypnale envenoming.


Journal of the Science of Food and Agriculture | 2013

Nutrient composition, antioxidant properties, and anti‐proliferative activity of Lignosus rhinocerus Cooke sclerotium

Yeannie Hy Yap; Nget Hong Tan; Shin Yee Fung; Azlina Abdul Aziz; Chon-Seng Tan; Szu-Ting Ng

BACKGROUND Lignosus rhinocerus (tiger milk mushroom) is an important medicinal mushroom used in Southeast Asia and China, and its sclerotium can be developed into functional food/nutraceuticals. The nutrient composition, antioxidant properties, and anti-proliferative activity of wild type and a cultivated strain of L. rhinocerus sclerotia were investigated. RESULTS The sclerotial powder has high carbohydrate but low fat content. Interestingly, the cultivated strain contains higher amounts of protein and water-soluble substances than the wild type. Phenolic content of hot-water, cold-water, and methanol extracts of the sclerotial powders ranged from 19.32 to 29.42 mg gallic acid equivalents g⁻¹ extract, while the ferric reducing antioxidant power values ranged from 0.006 to 0.016 mmol min⁻¹ g⁻¹ extract. The DPPH• , ABTS•⁺ , and superoxide anion radical scavenging activities of the extracts ranged from 0.52 to 1.12, 0.05 to 0.20, and -0.98 to 11.23 mmol Trolox equivalents g⁻¹ extract, respectively. Both strains exhibited strong superoxide anion radical scavenging activity comparable to rutin. The cold-water extracts exhibited anti-proliferative activity against human breast carcinoma (MCF-7) cells, with IC₅₀ values of 206 µg mL⁻¹ and 90 µg mL⁻¹ for the wild type and cultivated strains, respectively. CONCLUSION The cultivated L. rhinocerus sclerotium has the potential to be developed into functional food/nutraceuticals.


PLOS Neglected Tropical Diseases | 2012

Cross Neutralization of Afro-Asian Cobra and Asian Krait Venoms by a Thai Polyvalent Snake Antivenom (Neuro Polyvalent Snake Antivenom)

Poh Kuan Leong; Si Mui Sim; Shin Yee Fung; Khomvilai Sumana; Visith Sitprija; Nget Hong Tan

Background Snake envenomation is a serious public health threat in the rural areas of Asian and African countries. To date, the only proven treatment for snake envenomation is antivenom therapy. Cross-neutralization of heterologous venoms by antivenom raised against venoms of closely related species has been reported. The present study examined the cross neutralizing potential of a newly developed polyvalent antivenom, termed Neuro Polyvalent Snake Antivenom (NPAV). NPAV was produced by immunization against 4 Thai elapid venoms. Principal Findings In vitro neutralization study using mice showed that NPAV was able to neutralize effectively the lethality of venoms of most common Asiatic cobras (Naja spp.), Ophiophagus hannah and kraits (Bungarus spp.) from Southeast Asia, but only moderately to weakly effective against venoms of Naja from India subcontinent and Africa. Studies with several venoms showed that the in vivo neutralization potency of the NPAV was comparable to the in vitro neutralization potency. NPAV could also fully protect against N. sputatrix venom-induced cardio-respiratory depressant and neuromuscular blocking effects in anesthetized rats, demonstrating that the NPAV could neutralize most of the major lethal toxins in the Naja venom. Conclusions/Significance The newly developed polyvalent antivenom NPAV may find potential application in the treatment of elapid bites in Southeast Asia, especially Malaysia, a neighboring nation of Thailand. Nevertheless, the applicability of NPAV in the treatment of cobra and krait envenomations in Southeast Asian victims needs to be confirmed by clinical trials. The cross-neutralization results may contribute to the design of broad-spectrum polyvalent antivenom.


Basic & Clinical Pharmacology & Toxicology | 2014

Antiproliferative Activity of King Cobra (Ophiophagus hannah) Venom l-Amino Acid Oxidase

Mui Li Lee; Ivy Chung; Shin Yee Fung; M.S. Kanthimathi; Nget Hong Tan

King cobra (Ophiophagus hannah) venom l‐amino acid oxidase (LAAO), a heat‐stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF‐7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04 ± 0.00 and 0.05 ± 0.00 μg/mL, respectively, after 72‐hr treatment. In comparison, its cytotoxicity was about 3–4 times lower when tested against human non‐tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF‐7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18 ± 0.03 and 0.63 ± 0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7‐amino‐actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO‐treated tumour cells than in their non‐tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase‐3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours.


International Journal of Medical Sciences | 2014

King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

Mui Li Lee; Shin Yee Fung; Ivy Chung; Jayalakshmi Pailoor; Swee Hung Cheah; Nget Hong Tan

King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

Collaboration


Dive into the Shin Yee Fung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge