Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chong-Wen Zhou is active.

Publication


Featured researches published by Chong-Wen Zhou.


Journal of Physical Chemistry A | 2013

Theoretical and kinetic study of the hydrogen atom abstraction reactions of esters with HO2 radicals

Jorge Mendes; Chong-Wen Zhou; Henry J. Curran

This work details an ab initio and chemical kinetic study of the hydrogen atom abstraction reactions by the hydroperoxyl radical (HȮ2) on the following esters: methyl ethanoate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl isobutyrate, ethyl ethanoate, propyl ethanoate, and isopropyl ethanoate. Geometry optimizations and frequency calculations of all of the species involved, as well as the hindrance potential descriptions for reactants and transition states, have been performed with the Møller-Plesset (MP2) method using the 6-311G(d,p) basis set. A validation of all of the connections between transition states and local minima was performed by intrinsic reaction coordinate calculations. Electronic energies for all of the species are reported at the CCSD(T)/cc-pVTZ level of theory in kcal mol(-1) with the zero-point energy corrections. The CCSD(T)/CBS (extrapolated from CCSD(T)/cc-pVXZ, in which X = D, T, Q) was used for the reactions of methyl ethanoate + HȮ2 radicals as a benchmark in the electronic energy calculations. High-pressure limit rate constants, in the temperature range 500-2000 K, have been calculated for all of the reaction channels using conventional transition state theory with asymmetric Eckart tunneling corrections. The 1-D hindered rotor approximation has been used for the low frequency torsional modes in both reactants and transition states. The calculated individual and total rate constants are reported for all of the reaction channels in each reaction system. A branching ratio analysis for each reaction site has also been investigated for all of the esters studied in this work.


Journal of Physical Chemistry A | 2013

Theoretical and Kinetic Study of the Reactions of Ketones with HȮ2 Radicals. Part I: Abstraction Reaction Channels

Jorge Mendes; Chong-Wen Zhou; Henry J. Curran

This work presents an ab initio and chemical kinetic study of the reaction mechanisms of hydrogen atom abstraction by the HO2 radical on five ketones: dimethyl, ethyl methyl, n-propyl methyl, iso-propyl methyl, and iso-butyl methyl ketones. The Møller-Plesset method using the 6-311G(d,p) basis set has been used in the geometry optimization and the frequency calculation for all the species involved in the reactions, as well as the hindrance potential description for reactants and transition states. Intrinsic reaction coordinate calculations were carried out to validate all the connections between transition states and local minima. Energies are reported at the CCSD(T)/cc-pVTZ//MP2/6-311G(d,p) level of theory. The CCSD(T)/cc-pVXZ method (X = D, T, Q) was used for the reaction mechanism of dimethyl ketone + HO2 radical in order to benchmark the computationally less expensive method of CCSD(T)/cc-pVTZ//MP2/6-311G(d,p). High-pressure limit rate constants have been calculated for all the reaction channels by conventional transition state theory with asymmetric Eckart tunneling corrections and 1-D hindered rotor approximations in the temperature range 500-2000 K.


Journal of Physical Chemistry A | 2014

Theoretical chemical kinetic study of the H-atom abstraction reactions from aldehydes and acids by Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals.

Jorge Mendes; Chong-Wen Zhou; Henry J. Curran

We have performed a systematic, theoretical chemical kinetic investigation of H atom abstraction by Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals from aldehydes (methanal, ethanal, propanal, and isobutanal) and acids (methanoic acid, ethanoic acid, propanoic acid, and isobutanoic acid). The geometry optimizations and frequencies of all of the species in the reaction mechanisms of the title reactions were calculated using the MP2 method and the 6-311G(d,p) basis set. The one-dimensional hindered rotor treatment for reactants and transition states and the intrinsic reaction coordinate calculations were also determined at the MP2/6-311G(d,p) level of theory. For the reactions of methanal and methanoic acid with Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals, the calculated relative electronic energies were obtained with the CCSD(T)/cc-pVXZ (where X = D, T, and Q) method and were extrapolated to the complete basis set limit. The electronic energies obtained with the CCSD(T)/cc-pVTZ method were benchmarked against the CCSD(T)/CBS energies and were found to be within 1 kcal mol(-1) of one another. Thus, the energies calculated using the less expensive CCSD(T)/cc-pVTZ method were used in all of the reaction mechanisms and in calculating our high-pressure limit rate constants for the title reactions. Rate constants were calculated using conventional transition state theory with an asymmetric Eckart tunneling correction, as implemented in Variflex. Herein, we report the individual and average rate constants, on a per H atom basis, and total rate constants in the temperature range 500-2000 K. We have compared some of our rate constant results to available experimental and theoretical data, and our results are generally in good agreement.


Journal of Physical Chemistry A | 2014

Theoretical Study of the Rate Constants for the Hydrogen Atom Abstraction Reactions of Esters with •OH Radicals

Jorge Mendes; Chong-Wen Zhou; Henry J. Curran

A systematic investigation of the rate constants for hydrogen atom abstraction reactions by hydroxyl radicals on esters has been performed. The geometry optimizations and frequency calculations were obtained using the second-order Møller-Plesset method with the 6-311G(d,p) basis set. The same method was also used in order to determine the dihedral angle potential for each individual hindered rotor in each reactant and transition state. Intrinsic reaction coordinate calculations were used in order to connect each transition state to the corresponding local minimum. For the reactions of methyl ethanoate with an (•)OH radical, the relative electronic energies were calculated using the G3 and the CCSD(T)/cc-pVXZ (where X = D, T, and Q) methods, which were extrapolated to the complete basis set (CBS) limit. The electronic energies obtained using the G3 method were then benchmarked against the CBS results and were found to be within 1 kcal mol(-1) of one another. The high-pressure limit rate constants for every reaction channel were calculated by conventional transition-state theory, with an asymmetric Eckart tunneling correction, using the energies obtained with the G3 method. We report the individual, average, and total rate constants in the temperature range from 500 to 2200 K. Our calculated results are within a factor of 2 for methyl ethanoate and between 40% to 50% for methyl propanoate and methyl butanoate when compared to previously reported experimental data.


Journal of Physical Chemistry A | 2014

Rate constant calculations of H-atom abstraction reactions from ethers by HȮ2 radicals.

Jorge Mendes; Chong-Wen Zhou; Henry J. Curran

In this work, we detail hydrogen atom abstraction reactions from six ethers by the hydroperoxyl radical, including dimethyl ether, ethyl methyl ether, propyl methyl ether, isopropyl methyl ether, butyl methyl ether, and isobutyl methyl ether, in order to test the effect of the functional group on the rate constant calculations. The Møller-Plesset (MP2) method with the 6-311G(d,p) basis set has been employed in the geometry optimizations and frequency calculations of all of the species involved in the above reaction systems. The connections between each transition state and the corresponding local minima have been determined by intrinsic reaction coordinate calculations. Energies are reported at the CCSD(T)/cc-pVTZ level of theory and include the zero-point energy corrections. As a benchmark in the electronic energy calculations, the CCSD(T)/CBS extrapolation was used for the reactions of dimethyl ether + HȮ2 radicals. A systematic calculation of the high-pressure limit rate constants has been performed using conventional transition-state theory, including asymmetric Eckart tunneling corrections, in the temperature range of 500-2000 K. The one dimensional hindrance potentials obtained at MP2/6-311G(d,p) for the reactants and transition states have been used to describe the low frequency torsional modes. Herein, we report the calculated individual, average, and total rate constants. A branching ratio analysis for every reaction site has also been performed.


Journal of Physical Chemistry A | 2013

Theoretical and Kinetic Study of the Reaction of Ethyl Methyl Ketone with HO2 for T = 600 -1, 600 K. Part II: Addition Reaction Channels

Chong-Wen Zhou; Jorge Mendes; Henry J. Curran

The temperature and pressure dependence of the addition reaction of ethyl methyl ketone (EMK) with HO2 radical has been calculated using the master equation method employing conventional transition state theory estimates for the microcanonical rate coefficients in the temperature range of 600-1600 K. Geometries, frequencies, and hindrance potentials were obtained at the B3LYP/6-311G(d,p) level of theory. A modified G3(MP2,CC) method has been used to calculate accurate electronic energies for all of the species involved in the reactions. The rigid-rotor harmonic oscillator approximation has been used for all of the vibrations except for the torsional degrees of freedom which are being treated as 1D hindered rotors. Asymmetric Eckart barriers were used to model tunneling effect in a one-dimensional reaction coordinate through saddle points. Our calculated results show that the four reaction channels forming 1-buten-2-ol + HO2 radical (R5), 2-buten-2-ol + HO2 radical (R10), acetic acid + ethylene + OH radical (R13), and 2-methyl-2-oxetanol + OH radical (R15) are the dominant channels. When the temperature is below 1000 K, the reaction R15 forming the cyclic ether, 2-methyl-2-oxetanol, is dominant while the reaction R13 forming acetic acid + ethylene + OH radical becomes increasingly dominant at temperatures above 1000 K. The other two channels forming 1-buten-2-ol, 2-buten-2-ol, and HO2 radical are not dominant but are still important product channels over the whole temperature range investigated here. No pressure dependence has been found for the reaction channels forming 2-methyl-2-oxetanol + OH radical and acetic acid + ethylene + OH radical. A slightly negative pressure dependence has been found for the reaction channels producing the two butenols. Rate constants for the four important reaction channels at 1 atm (in cm(3) mol(-1) s(-1)) are k(R5) = 2.67 × 10(15) × T(-1.32)exp(-16637/T), k(R10) = 1.62 × 10(8) × T(0.57)exp(-13142/T), k(R13) = 2.29 × 10(17) × T(-1.66)exp(-18169/T), and k(R15) = 6.17 × 10(-2) × T(3.35)exp(-10136/T). A comparison of the total rate constants for the addition of HO2˙ radical to EMK and that for H-atom abstraction by HO2˙ radical from EMK has also been carried out. We find that the abstraction reaction channels are dominant over the entire temperature range of 600-1600 K.


Journal of Physical Chemistry A | 2016

Toward the Development of a Fundamentally Based Chemical Model for Cyclopentanone: High-Pressure-Limit Rate Constants for H Atom Abstraction and Fuel Radical Decomposition

Chong-Wen Zhou; John M. Simmie; William J. Pitz; Henry J. Curran

Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. Calculated thermodynamic and kinetic data are presented for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. These radicals can be formed via H atom abstraction reactions by Ḣ and Ö atoms and ȮH, HȮ2, and ĊH3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when ȮH is involved, but the reverse holds true for HȮ2 radicals. The subsequent β-scission of the radicals formed is also determined, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.


Journal of Physical Chemistry A | 2017

Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation

Chong-Wen Zhou; John M. Simmie; Kieran P. Somers; C. Franklin Goldsmith; Henry J. Curran

Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants calculated in this work have also been used in predicting the reactivity of the target fuels of 1-butene, 2-butene, isobutene, 2-methylfuran, 2,5-dimethylfuran, and toluene, and the results show that the ignition delay times for those fuels have been increased by a factor of 1.5-3. This work provides a first systematic study of one of the key initiation reaction for compounds containing allylic hydrogen atoms.


Journal of Physical Chemistry A | 2017

Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface

Yang Li; Stephen J. Klippenstein; Chong-Wen Zhou; Henry J. Curran

The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ4H7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ4H71-3) and 3-buten-1-yl (Ċ4H71-4) radicals and C2H4 + Ċ2H3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C4H6 + Ḣ → products and C2H4 + Ċ2H3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both Ḣ atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.


Combustion and Flame | 2016

A comprehensive experimental and modeling study of isobutene oxidation

Chong-Wen Zhou; Yang Li; Eoin O'Connor; Kieran P. Somers; Sébastien Thion; Charles Keesee; Olivier Mathieu; Eric L. Petersen; Trent A. DeVerter; Matthew A. Oehlschlaeger; Goutham Kukkadapu; Chih-Jen Sung; Majed Alrefae; Fathi Khaled; Aamir Farooq; Patricia Dirrenberger; Pierre-Alexandre Glaude; Frédérique Battin-Leclerc; Jeffrey Santner; Yiguang Ju; T. J. Held; Francis M. Haas; Frederick L. Dryer; Henry J. Curran

Collaboration


Dive into the Chong-Wen Zhou's collaboration.

Top Co-Authors

Avatar

Henry J. Curran

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

John M. Simmie

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Yang Li

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Kieran P. Somers

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aamir Farooq

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Colin Banyon

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Eoin O'Connor

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge