Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chong Yuan is active.

Publication


Featured researches published by Chong Yuan.


Journal of Biological Chemistry | 2007

Enzymes and Receptors of Prostaglandin Pathways with Arachidonic Acid-derived Versus Eicosapentaenoic Acid-derived Substrates and Products

Masayuki Wada; Cynthia J. DeLong; Yu H. Hong; Caroline Jill Rieke; Inseok Song; Ranjinder S. Sidhu; Chong Yuan; Mark Warnock; Alvin H. Schmaier; Chieko Yokoyama; Emer M. Smyth; Stephen J. Wilson; Garret A. FitzGerald; R. Michael Garavito; Xin Sui De; John W. Regan; William L. Smith

Dietary fish oil containing ω3 highly unsaturated fatty acids has cardioprotective and anti-inflammatory effects. Prostaglandins (PGs) and thromboxanes are produced in vivo both from the ω6 fatty acid arachidonic acid (AA) and the ω3 fatty acid eicosapentaenoic acid (EPA). Certain beneficial effects of fish oil may result from altered PG metabolism resulting from increases in the EPA/AA ratios of precursor phospholipids. Here we report in vitro specificities of prostanoid enzymes and receptors toward EPA-derived, 3-series versus AA-derived, 2-series prostanoid substrates and products. The largest difference was seen with PG endoperoxide H synthase (PGHS)-1. Under optimal conditions purified PGHS-1 oxygenates EPA with only 10% of the efficiency of AA, and EPA significantly inhibits AA oxygenation by PGHS-1. Two- to 3-fold higher activities or potencies with 2-series versus 3-series compounds were observed with PGHS-2, PGD synthases, microsomal PGE synthase-1 and EP1, EP2, EP3, and FP receptors. Our most surprising observation was that AA oxygenation by PGHS-2 is only modestly inhibited by EPA (i.e. PGHS-2 exhibits a marked preference for AA when EPA and AA are tested together). Also unexpectedly, TxA3 is about equipotent to TxA2 at the TPα receptor. Our biochemical data predict that increasing phospholipid EPA/AA ratios in cells would dampen prostanoid signaling with the largest effects being on PGHS-1 pathways involving PGD, PGE, and PGF. Production of 2-series prostanoids from AA by PGHS-2 would be expected to decrease in proportion to the compensatory decrease in the AA content of phospholipids that would result from increased incorporation of ω3 fatty acids such as EPA.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1

Gilad Rimon; Ranjinder S. Sidhu; D. Adam Lauver; Jullia Y. Lee; Narayan P. Sharma; Chong Yuan; Ryan A. Frieler; Raymond C. Trievel; Benedict R. Lucchesi; William L. Smith

Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A2 formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially blocked by COX-2 inhibitors called coxibs. COXs are homodimers composed of identical subunits, but we have shown that only one subunit is active at a time during catalysis; moreover, many nsNSAIDS bind to a single subunit of a COX dimer to inhibit the COX activity of the entire dimer. Here, we report the surprising observation that celecoxib and other coxibs bind tightly to a subunit of COX-1. Although celecoxib binding to one monomer of COX-1 does not affect the normal catalytic processing of AA by the second, partner subunit, celecoxib does interfere with the inhibition of COX-1 by aspirin in vitro. X-ray crystallographic results obtained with a celecoxib/COX-1 complex show how celecoxib can bind to one of the two available COX sites of the COX-1 dimer. Finally, we find that administration of celecoxib to dogs interferes with the ability of a low dose of aspirin to inhibit AA-induced ex vivo platelet aggregation. COX-2 inhibitors such as celecoxib are widely used for pain relief. Because coxibs exhibit cardiovascular side effects, they are often prescribed in combination with low-dose aspirin to prevent thrombosis. Our studies predict that the cardioprotective effect of low-dose aspirin on COX-1 may be blunted when taken with coxibs.


Journal of Biological Chemistry | 2009

Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers

Chong Yuan; Ranjinder S. Sidhu; Dmitry V. Kuklev; Yuji Kado; Masayuki Wada; Inseok Song; William L. Smith

Prostaglandin endoperoxide H synthases (PGHSs) 1 and 2, also known as cyclooxygenases (COXs), catalyze the oxygenation of arachidonic acid (AA) in the committed step in prostaglandin (PG) biosynthesis. PGHSs are homodimers that display half of sites COX activity with AA; thus, PGHSs function as conformational heterodimers. Here we show that, during catalysis, fatty acids (FAs) are bound at both COX sites of a PGHS-2 dimer. Initially, an FA binds with high affinity to one COX site of an unoccupied homodimer. This monomer becomes an allosteric monomer, and it causes the partner monomer to become the catalytic monomer that oxygenates AA. A variety of FAs can bind with high affinity to the COX site of the monomer that becomes the allosteric monomer. Importantly, the efficiency of AA oxygenation is determined by the nature of the FA bound to the allosteric monomer. When tested with low concentrations of saturated and monounsaturated FAs (e.g. oleic acid), the rates of AA oxygenation are typically 1.5-2 times higher with PGHS-2 than with PGHS-1. These different kinetic behaviors of PGHSs may account for the ability of PGHS-2 but not PGHS-1 to efficiently oxygenate AA in intact cells when AA is a small fraction of the FA pool such as during “late phase” PG synthesis.


Journal of Biological Chemistry | 2008

Two Distinct Pathways for Cyclooxygenase-2 Protein Degradation

Uri R. Mbonye; Chong Yuan; Clair Harris; Ranjinder S. Sidhu; Inseok Song; Toshiya Arakawa; William L. Smith

Cyclooxygenases (COX-1 and COX-2) are N-glycosylated, endoplasmic reticulum-resident, integral membrane proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many types of cells, whereas COX-2 is usually expressed inducibly and transiently. The control of COX-2 protein expression occurs at several levels, and overexpression of COX-2 is associated with pathologies such as colon cancer. Here we have investigated COX-2 protein degradation and demonstrate that it can occur through two independent pathways. One pathway is initiated by post-translational N-glycosylation at Asn-594. The N-glycosyl group is then processed, and the protein is translocated to the cytoplasm, where it undergoes proteasomal degradation. We provide evidence from site-directed mutagenesis that a 27-amino acid instability motif (27-IM) regulates posttranslational N-glycosylation of Asn-594. This motif begins with Glu-586 8 residues upstream of the N-glycosylation site and ends with Lys-612 near the C terminus at Leu-618. Key elements of the 27-IM include a helix involving residues Glu-586 to Ser-596 with Asn-594 near the end of this helix and residues Leu-610 and Leu-611, which are located in an apparently unstructured downstream region of the 27-IM. The last 16 residues of the 27-IM, including Leu-610 and Leu-611, appear to promote N-glycosylation of Asn-594 perhaps by causing this residue to become exposed to appropriate glycosyl transferases. A second pathway for COX-2 protein degradation is initiated by substrate-dependent suicide inactivation. Suicide-inactivated protein is then degraded. The biochemical steps have not been resolved, but substrate-dependent degradation is not inhibited by proteasome inhibitors or inhibitors of lysosomal proteases. The pathway involving the 27-IM occurs at a constant rate, whereas degradation through the substrate-dependent process is coupled to the rate of substrate turnover.


Biochemistry | 2010

Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers

Ranjinder S. Sidhu; Jullia Y. Lee; Chong Yuan; William L. Smith

Prostaglandin endoperoxide H synthases (PGHSs)-1 and -2 (also called cyclooxygenases (COXs)-1 and -2) catalyze the committed step in prostaglandin biosynthesis. Both isoforms are targets of nonsteroidal antiinflammatory drugs (NSAIDs). PGHSs are homodimers that exhibit half-of-sites COX activity; moreover, some NSAIDs cause enzyme inhibition by binding only one monomer. To learn more about the cross-talk that must be occurring between the monomers comprising each PGHS-1 dimer, we analyzed structures of PGHS-1 crystallized under five different conditions including in the absence of any tightly binding ligand and in the presence of nonspecific NSAIDs and of a COX-2 inhibitor. When crystallized with substoichiometric amounts of an NSAID, both monomers are often fully occupied with inhibitor; thus, the enzyme prefers to crystallize in a fully occupied form. In comparing the five structures, we only observe changes in the positions of residues 123-129 and residues 510-515. In cases where one monomer is fully occupied with an NSAID and the partner monomer is incompletely occupied, an alternate conformation of the loop involving residues 123-129 is seen in the partially occupied monomer. We propose, on the basis of this observation and previous cross-linking studies, that cross-talk between monomers involves this mobile 123-129 loop, which is located at the dimer interface. In ovine PGHS-1 crystallized in the absence of an NSAID, there is an alternative route for substrate entry into the COX site different than the well-known route through the membrane binding domain.


Journal of Lipid Research | 2012

Human cyclooxygenase-1 activity and its responses to COX inhibitors are allosterically regulated by nonsubstrate fatty acids

Hechang Zou; Chong Yuan; Liang Dong; Ranjinder S. Sidhu; Yu H. Hong; Dmitry V. Kuklev; William L. Smith

Recombinant human prostaglandin endoperoxide H synthase-1 (huPGHS-1) was characterized. huPGHS-1 has a single high-affinity heme binding site per dimer and exhibits maximal cyclooxygenase (COX) activity with one heme per dimer. Thus, huPGHS-1 functions as a conformational heterodimer having a catalytic monomer (Ecat) with a bound heme and an allosteric monomer (Eallo) lacking heme. The enzyme is modestly inhibited by common FAs including palmitic, stearic, and oleic acids that are not COX substrates. Studies of arachidonic acid (AA) substrate turnover at high enzyme-to-substrate ratios indicate that nonsubstrate FAs bind the COX site of Eallo to modulate the properties of Ecat. Nonsubstrate FAs slightly inhibit huPGHS-1 but stimulate huPGHS-2, thereby augmenting AA oxygenation by PGHS-2 relative to PGHS-1. Nonsubstrate FAs potentiate the inhibition of huPGHS-1 activity by time-dependent COX inhibitors, including aspirin, all of which bind Ecat. Surprisingly, preincubating huPGHS-1 with nonsubstrate FAs in combination with ibuprofen, which by itself is a time-independent inhibitor, causes a short-lived, time-dependent inhibition of huPGHS-1. Thus, in general, having a FA bound to Eallo stabilizes time-dependently inhibited conformations of Ecat. We speculate that having an FA bound to Eallo also stabilizes Ecat conformers during catalysis, enabling half of sites of COX activity.


Molecular Pharmacology | 2010

Asymmetric Acetylation of the Cyclooxygenase-2 Homodimer by Aspirin and Its Effects on the Oxygenation of Arachidonic, Eicosapentaenoic, and Docosahexaenoic Acids

Narayan P. Sharma; Liang Dong; Chong Yuan; Kathleen R. Noon; William L. Smith

Prostaglandin endoperoxide H synthases (PGHS)-1 and -2, also called cyclooxygenases, convert arachidonic acid (AA) to prostaglandin H2 (PGH2) in the committed step of prostaglandin biosynthesis. Both enzymes are homodimers, but the monomers often behave asymmetrically as conformational heterodimers during catalysis and inhibition. Here we report that aspirin maximally acetylates one monomer of human (hu) PGHS-2. The acetylated monomer of aspirin-treated huPGHS-2 forms 15-hydroperoxyeicosatetraenoic acid from AA, whereas the nonacetylated partner monomer forms mainly PGH2 but only at 15 to 20% of the rate of native huPGHS-2. These latter conclusions are based on the findings that the nonsteroidal anti-inflammatory drug diclofenac binds a single monomer of native huPGHS-2, having an unmodified Ser530 to inhibit the enzyme, and that diclofenac inhibits PGH2 but not 15-hydroperoxyeicosatraenoic acid formation by acetylated huPGHS-2. The 18R- and 17R-resolvins putatively involved in resolution of inflammation are reportedly formed via aspirin-acetylated PGHS-2 from eicosapentaenoic acid and docosahexaenoic acid, respectively, so we also characterized the oxygenation of these omega-3 fatty acids by aspirin-treated huPGHS-2. Our in vitro studies suggest that 18R- and 17R-resolvins could be formed only at low rates corresponding to less than 1 and 5%, respectively, of the rates of formation of PGH2 by native PGHS-2.


Journal of Biological Chemistry | 2016

Different fatty acids compete with arachidonic acid for binding to the allosteric or catalytic subunits of cyclooxygenases to regulate prostanoid synthesis

Liang Dong; Hechang Zou; Chong Yuan; Yu H. Hong; Dmitry V. Kuklev; William L. Smith

Prostaglandin endoperoxide H synthases (PGHSs), also called cyclooxygenases (COXs), convert arachidonic acid (AA) to PGH2. PGHS-1 and PGHS-2 are conformational heterodimers, each composed of an (Eallo) and a catalytic (Ecat) monomer. Previous studies suggested that the binding to Eallo of saturated or monounsaturated fatty acids (FAs) that are not COX substrates differentially regulate PGHS-1 versus PGHS-2. Here, we substantiate and expand this concept to include polyunsaturated FAs known to modulate COX activities. Non-substrate FAs like palmitic acid bind Eallo of PGHSs stimulating human (hu) PGHS-2 but inhibiting huPGHS-1. We find the maximal effects of non-substrate FAs on both huPGHSs occurring at the same physiologically relevant FA/AA ratio of ∼20. This inverse allosteric regulation likely underlies the ability of PGHS-2 to operate at low AA concentrations, when PGHS-1 is effectively latent. Unlike FAs tested previously, we observe that C-22 FAs, including ω-3 fish oil FAs, have higher affinities for Ecat than Eallo subunits of PGHSs. Curiously, C-20 ω-3 eicosapentaenoate preferentially binds Ecat of huPGHS-1 but Eallo of huPGHS-2. PGE2 production decreases 50% when fish oil consumption produces tissue EPA/AA ratios of ≥0.2. However, 50% inhibition of huPGHS-1 itself is only seen with ω-3 FA/AA ratios of ≥5.0. This suggests that fish oil-enriched diets disfavor AA oxygenation by altering the composition of the FA pool in which PGHS-1 functions. The distinctive binding specificities of PGHS subunits permit different combinations of non-esterified FAs, which can be manipulated dietarily, to regulate AA binding to Eallo and/or Ecat thereby controlling COX activities.


Journal of Biological Chemistry | 2015

A Cyclooxygenase-2 Dependent Prostaglandin E2 Biosynthetic System in the Golgi Apparatus

Chong Yuan; William L. Smith

Background: When cyclooxygenases-1 and -2 (COXs-1 and -2) are co-expressed, COX-2 can function, whereas COX-1 is latent. Results: Significant amounts of COX-2, microsomal PGE synthase-1, and cytosolic PLA2α but not COX-1 are in the Golgi. Conclusion: Cytosolic PLA2α, COX-2, and microsomal PGE synthase-1 comprise a unique COX-2-dependent PGE2 biosynthetic system in the Golgi. Significance: COX-2 and COX-1 can function in different subcellular compartments. Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A2α, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca2+ mobilization. We propose that cytosolic phospholipase A2α, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.


Journal of Lipid Research | 2018

Flipping the cyclooxygenase (Ptgs) genes reveals isoform-specific compensatory functions

Xinzhi Li; Liudmila L. Mazaleuskaya; Chong Yuan; Laurel L. Ballantyne; Hu Meng; William L. Smith; Garret A. FitzGerald; Colin D. Funk

Two prostaglandin (PG) H synthases encoded by Ptgs genes, colloquially known as cyclooxygenase (COX)-1 and COX-2, catalyze the formation of PG endoperoxide H2, the precursor of the major prostanoids. To address the functional interchangeability of these two isoforms and their distinct roles, we have generated COX-2>COX-1 mice whereby Ptgs2 is knocked in to the Ptgs1 locus. We then “flipped” Ptgs genes to successfully create the Reversa mouse strain, where knock-in COX-2 is expressed constitutively and knock-in COX-1 is lipopolysaccharide (LPS) inducible. In macrophages, flipping the two Ptgs genes has no obvious impact on COX protein subcellular localization. COX-1 was shown to compensate for PG synthesis at high concentrations of substrate, whereas elevated LPS-induced PG production was only observed for cells expressing endogenous COX-2. Differential tissue-specific patterns of expression of the knock-in proteins were evident. Thus, platelets from COX-2>COX-1 and Reversa mice failed to express knock-in COX-2 and, therefore, thromboxane (Tx) production in vitro and urinary Tx metabolite formation in COX-2>COX-1 and Reversa mice in vivo were substantially decreased relative to WT and COX-1>COX-2 mice. Manipulation of COXs revealed isoform-specific compensatory functions and variable degrees of interchangeability for PG biosynthesis in cells/tissues.

Collaboration


Dive into the Chong Yuan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Dong

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Yu H. Hong

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Inseok Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hechang Zou

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge