Chris A. Robinson
City University of New York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris A. Robinson.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2011
Michelle Singleton; Alfred L. Rosenberger; Chris A. Robinson; Rob O'Neill
The predominance of molar teeth in fossil hominin assemblages makes the patterning of molar shape variation a topic of bioanthropological interest. Extant models are the principal basis for understanding dental variation in the fossil record. As the sister taxon to the hominin clade, Pan is one such model and the only widely accepted extant hominid model for both interspecific and intraspecific variation. To explore the contributions of allometric scaling and meristic variation to molar variation in Pan, we applied geometric shape analysis to 3D landmarks collected from virtual replicas of chimpanzee and bonobo mandibular molars. Multivariate statistical analysis and 3D visualization of metameric and allometric shape vectors were used to characterize shape differences and test the hypothesis that species of Pan share patterns of metameric variation and molar shape allometry. Procrustes‐based shape variables were found to effectively characterize crown shape, sorting molars into species and tooth‐row positions with ≥95% accuracy. Chimpanzees and bonobos share a common pattern of M1–M2 metameric variation, which is defined by differences in the relative position of the metaconid, size of the hypoconulid, curvature of the buccal wall, and proportions of the basins and foveae. Allometric scaling of molar shape is homogeneous for M1 and M2 within species, but bonobo and chimpanzee allometric vectors are significantly different. Nevertheless, the common allometric shape trend explains most molar‐shape differences between P. paniscus and P. troglodytes. When allometric effects are factored out, chimpanzee and bonobo molars are not morphometrically distinguishable. Implications for hominid taxonomy and dietary reconstruction are discussed. Anat Rec, 2011.
Journal of Human Evolution | 2012
Chris A. Robinson
The aim of this research is to determine whether geometric morphometric (GM) techniques can provide insights into how the shape of the mandibular corpus differs between bonobos and chimpanzees and to explore the potential implications of those results for our understanding of hominin evolution. We focused on this region of the mandible because of the relative frequency with which it has been recovered in the hominin fossil record. In addition, no previous study had explored in-depth three-dimensional (3D) mandibular corpus shape differences between adults of the two Pan species using geometric morphometrics. GM methods enable researchers to quantitatively analyze and visualize 3D shape changes in skeletal elements and provide an important compliment to traditional two-dimensional analyses. Eighteen mandibular landmarks were collected using a Microscribe 3DX portable digitizer. Specimen configurations were superimposed using Generalized Procrustes analysis and the projections of the fitted coordinates to tangent space were analyzed using multivariate statistics. The size-adjusted corpus shapes of Pan paniscus and Pan troglodytes could be assigned to species with approximately 93% accuracy and the Procrustes distance between the two species was significant. Analyses of the residuals from a multivariate linear regression of the data on centroid size suggested that much of the shape difference between the species is size-related. Chimpanzee subspecies and a small sample of Australopithecus specimens could be correctly identified to taxon, at best, only 75% of the time, although the Procrustes distances between these taxa were significant. The shape of the mandibular symphysis was identified as especially useful in differentiating Pan species from one another. This suggests that this region of the mandible has the potential to be informative for taxonomic analyses of fossil hominoids, including hominins. The results also have implications for phylogenetic hypotheses of hominoid evolution.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2010
Chris A. Robinson; Frank L’Engle Williams
The location of the mental foramen on the mandibular corpus has figured prominently in debates concerning the taxonomy of fossil hominins and Gorilla gorilla. In this study we quantify the antero/posterior (A/P) position of the mental foramen across great apes, modern humans and Australopithecus. Contrary to most qualitative assessments, we find significant differences between some extant hominoid species in mental foramen A/P position supporting its potential usefulness as a character for taxonomic and phylogenetic analyses of fossil hominoids. Gorilla gorilla, particularly the eastern subspecies, with a comparatively longer dental arcade and fossil and extant hominins with reduced canines and incisors tend to exhibit more anteriorly positioned mental foramina. Conversely, Pan troglodytes exhibits more posteriorly positioned mental foramina. Variation in this character among Gorilla gorilla subspecies supports recent taxonomic assessments that separate eastern and western populations. In all taxa other than Pan troglodytes the A/P position of the mental foramen is positively allometric with respect to dental arcade length. Thus, within each of these species, specimens with longer dental arcades tend to have more posteriorly positioned mental foramina. Those species with greater sexual dimorphism in canine size and dental arcade length (i.e., Gorilla gorilla and Pongo pygmaeus) exhibit more extreme differences between smaller and larger individuals. Moreover, among great apes those individuals with greater anterior convergence of the dental arcade tend to exhibit more posteriorly positioned mental foramina. Dental arcade length, canine crown area and anterior convergence are all significantly associated with mental foramen A/P position, suggesting that these traits may influence taxonomic variation in the A/P position of the mental foramen. Anat Rec 293:1337–1349, 2010.
Journal of Human Evolution | 2016
Terrence Ritzman; Claire E. Terhune; Philipp Gunz; Chris A. Robinson
The fossils from Malapa cave, South Africa, attributed to Australopithecus sediba, include two partial skeletons-MH1, a subadult, and MH2, an adult. Previous research noted differences in the mandibular rami of these individuals. This study tests three hypotheses that could explain these differences. The first two state that the differences are due to ontogenetic variation and sexual dimorphism, respectively. The third hypothesis, which is relevant to arguments suggesting that MH1 belongs in the genus Australopithecus and MH2 in Homo, is that the differences are due to the two individuals representing more than one taxon. To test these hypotheses, we digitized two-dimensional sliding semilandmarks in samples of Gorilla, Pan, Pongo, and Homo, as well as MH1 and MH2. We document large amounts of shape variation within all extant species, which is related neither to ontogeny nor sexual dimorphism. Extant species nevertheless form clusters in shape space, albeit with some overlap. The shape differences in extant taxa between individuals in the relevant age categories are minimal, indicating that it is unlikely that ontogeny explains the differences between MH1 and MH2. Similarly, the pattern of differences between MH1 and MH2 is inconsistent with those found between males and females in the extant sample, suggesting that it is unlikely that sexual dimorphism explains these differences. While the difference between MH1 and MH2 is large relative to within-species comparisons, it does not generally fall outside of the confidence intervals for extant intraspecific variation. However, the MH1-MH2 distance also does not plot outside and below the between-species confidence intervals. Based on these results, as well as the contextual and depositional evidence, we conclude that MH1 and MH2 represent a single species and that the relatively large degree of variation in this species is due to neither ontogeny nor sexual dimorphism.
Journal of Morphology | 2014
Claire E. Terhune; Chris A. Robinson; Terrence Ritzman
Considerable variation exists in mandibular ramus form among primates, particularly great apes and humans. Recent analyses of adult ramal morphology have suggested that features on the ramus, especially the coronoid process and sigmoid notch, can be treated as phylogenetic characters that can be used to reconstruct relationships among great ape and fossil hominin taxa. Others have contended that ramal morphology is more influenced by function than phylogeny. In addition, it remains unclear how ontogeny of the ramus contributes to adult variation in great apes and humans. Specifically, it is unclear whether differences among adults appear early and are maintained throughout ontogeny, or if these differences appear, or are enhanced, during later development. To address these questions, the present study examined a broad ontogenetic sample of great apes and humans using two‐dimensional geometric morphometric analysis. Variation within and among species was summarized using principal component and thin plate spline analyses, and Procrustes distances and discriminant function analyses were used to statistically compare species and age classes. Results suggest that morphological differences among species in ramal morphology appear early in ontogeny and persist into adulthood. Morphological differences among adults are particularly pronounced in the height and angulation of the coronoid process, the depth and anteroposterior length of the sigmoid notch, and the inclination of the ramus. In all taxa, the ascending ramus of the youngest specimens is more posteriorly inclined in relation to the occlusal plane, shifting to become more upright in adults. These results suggest that, although there are likely functional influences over the form of the coronoid process and ramus, the morphology of this region can be profitably used to differentiate among great apes, modern humans, and fossil hominid taxa. J. Morphol. 275:661–677, 2014.
American Journal of Physical Anthropology | 2017
Chris A. Robinson; Claire E. Terhune
OBJECTIVES This study compares two- and three-dimensional morphometric data to determine the extent to which intra- and interobserver and intermethod error influence the outcomes of statistical analyses. MATERIALS AND METHODS Data were collected five times for each method and observer on 14 anthropoid crania using calipers, a MicroScribe, and 3D models created from NextEngine and microCT scans. ANOVA models were used to examine variance in the linear data at the level of genus, species, specimen, observer, method, and trial. Three-dimensional data were analyzed using geometric morphometric methods; principal components analysis was employed to examine how trials of all specimens were distributed in morphospace and Procrustes distances among trials were calculated and used to generate UPGMA trees to explore whether all trials of the same individual grouped together regardless of observer or method. RESULTS Most variance in the linear data was at the genus level, with greater variance at the observer than method levels. In the 3D data, interobserver and intermethod error were similar to intraspecific distances among Callicebus cupreus individuals, with interobserver error being higher than intermethod error. Generally, taxa separate well in morphospace, with different trials of the same specimen typically grouping together. However, trials of individuals in the same species overlapped substantially with one another. CONCLUSION Researchers should be cautious when compiling data from multiple methods and/or observers, especially if analyses are focused on intraspecific variation or closely related species, as in these cases, patterns among individuals may be obscured by interobserver and intermethod error. Conducting interobserver and intermethod reliability assessments prior to the collection of data is recommended.
Journal of Human Evolution | 2018
James D. Pampush; Jill E. Scott; Chris A. Robinson; Lucas K. Delezene
The rate of change in primate mandibular symphyseal angles was modeled with particular aim of locating a rate-shift within the hominin clade. Prior work noted that the human symphyseal angle must have experienced a rapid rate of change in order to assume the modern human form, suggestive of the non-random work of natural selection. This study indicates that the rate of symphyseal evolution rose dramatically between Australopithecus anamensis and Australopithecus afarensis and continued throughout the diversification of the hominin clade. Noting the timing of this event, we speculate as to what ecological factors could have been at play in driving this rearrangement of the anterior mandible, contributing to the eventual appearance of the human chin.
South African Journal of Science | 2018
Chris A. Robinson; Timothy L. Campbell; Susanne Cote; Darryl J. de Ruiter
Journal of Human Evolution | 2018
Claire E. Terhune; Terrence B. Ritzman; Chris A. Robinson
The 86th Annual Meeting of the American Association of Physical Anthropologists, New Orleans | 2017
Sabrina Curran; David L. Fox; Nicole D. Garrett; Alexandru Petculescu; Chris A. Robinson; Marius Robu; Claire E. Terhune