Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire E. Terhune is active.

Publication


Featured researches published by Claire E. Terhune.


Journal of Human Evolution | 2013

A 3-D geometric morphometric study of intraspecific variation in the ontogeny of the temporal bone in modern Homo sapiens

Heather F. Smith; Terrence Ritzman; Erik Otárola-Castillo; Claire E. Terhune

This study addresses how the human temporal bone develops the population-specific pattern of morphology observed among adults and at what point in ontogeny those patterns arise. Three-dimensional temporal bone shape was captured using 15 landmarks on ontogenetic series of specimens from seven modern human populations. Discriminant function analysis revealed that population-specific temporal bone morphology is evident early in ontogeny, with significant shape differences among many human populations apparent prior to the eruption of the first molar. As early as five years of age, temporal bone shape reflects population history and can be used to reliably sort populations, although those in closer geographic proximity and molecular affinity are more likely to be misclassified. The deviation of cold-adapted populations from this general pattern of congruence between temporal bone morphology and genetic distances, identified in previous work, was confirmed here in adult and subadult specimens, and was revealed to occur earlier in ontogeny than previously recognized. Significant differences exist between the ontogenetic trajectories of some pairs of populations, but not among others, and the angles of these trajectories do not reflect genetic relationships or final adult temporal bone size. Significant intrapopulation differences are evident early in ontogeny, with differences becoming amplified by divergent trajectories in some groups. These findings elucidate how the congruence between adult human temporal bone morphology and population history develops, and reveal that this pattern corresponds closely to that described previously for facial ontogeny.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2015

Form, Function, and Geometric Morphometrics

Siobhán B. Cooke; Claire E. Terhune

Geometric morphometrics (GM) has increasingly become an important tool in assessing and studying shape variation in a wide variety of taxa. While the GM toolkit has unparalleled power to quantify shape, its use in studies of functional morphology have been questioned. Here, we assess the state of the field of GM and provide an overview of the techniques available to assess shape, including aspects of visualization, statistical analysis, phylogenetic control, and more. Additionally, we briefly review the history of functional morphology and summarize the main tools available to the functional morphologist. We explore the intersection of geometric morphometrics and functional morphology and we suggest ways that we may be able to move forward in profitably combining these two research areas. Finally, this paper provides a brief introduction to the papers in this special issue and highlights the ways in which the contributing authors have approached the intersection of GM and functional morphology. Anat Rec, 298:5–28, 2015.


Journal of Human Evolution | 2011

Dietary correlates of temporomandibular joint morphology in New World primates.

Claire E. Terhune

Previous analyses of the masticatory apparatus have demonstrated that the shape of the temporomandibular joint (TMJ) is functionally and adaptively linked to variation in feeding behavior and diet in primates. Building on previous research, this study presents an analysis of the link between diet and TMJ morphology in the context of functional and dietary differences among New World primates. To evaluate this proposed relationship, I used three-dimensional morphometric methods to quantify TMJ shape across a sample of 13 platyrrhine species. A broad interspecific analysis of this sample found strong relationships among TMJ size, TMJ shape, and diet, suggesting that both size and diet are significant factors influencing TMJ morphology in New World primates. However, it is likely that at least some of these differences are related to a division of dietary categories along clade lines. A series of hypotheses related to load resistance capabilities and range of motion in the TMJ were then tested among small groups of closely related taxa with documented dietary differences. These pairwise analyses indicate that some aspects of TMJ morphology can be used to differentiate among closely related species with different diets. However, not all of my predictions were upheld. The anteroposterior dimensions of the TMJ were most strongly consistent with hypothesized differences in ingestive/masticatory behaviors and jaw gape, whereas the predictions generated for variation in entoglenoid and articular tubercle height were not upheld. These results imply that while some features can be reliably associated with increased load resistance and facilitation of wider jaw gapes in the masticatory apparatus, other features are less strongly correlated with masticatory function.


American Journal of Physical Anthropology | 2013

Dietary correlates of temporomandibular joint morphology in the great apes

Claire E. Terhune

Behavioral observations of great apes have consistently identified differences in feeding behavior among species, and these differences have been linked to variation in masticatory form. As the point at which the mandible and cranium articulate, the temporomandibular joint (TMJ) is an important component of the masticatory apparatus. Forces are transmitted between the mandible and cranium via the TMJ, and this joint helps govern mandibular range of motion. This study examined the extent to which TMJ form covaries with feeding behavior in the great apes by testing a series of biomechanical hypotheses relating to specific components of joint shape using linear measurements extracted from three-dimensional coordinate data. Results of these analyses found that taxa differ significantly in TMJ shape, particularly in the mandibular fossa. Chimpanzees have relatively more anteroposteriorly elongated joint surfaces, whereas gorillas tend to have relatively anteroposteriorly compressed joints. Orangutans were most commonly intermediate in form between Pan and Gorilla, perhaps reflecting a trade-off between jaw gape and load resistance capabilities. Importantly, much of the observed variation among taxa reflects differences in morphologies that facilitate gape over force production. These data therefore continue to emphasize the unclear relationship between mandibular loading and bony morphology, but highlight the need for further data regarding food material properties, jaw gape, and ingestive/food processing behaviors.


Integrative and Comparative Biology | 2011

The Instantaneous Center of Rotation of the Mandible in Nonhuman Primates

Claire E. Terhune; Jose Iriarte-Diaz; Andrea B. Taylor; Callum F. Ross

Kinematic analyses of mandibular movement in humans demonstrate that the mandibular instantaneous center of rotation (ICoR) is commonly located near the level of the occlusal plane and varies in its position during a chewing sequence. Few data are available regarding the location of the ICoR in nonhuman primates and it remains unclear how the position of the ICoR varies in association with mastication and/or gape behaviors. ICoR was quantified throughout the gape cycle in five species of nonhuman primates (Macaca mulatta, Cebus apella, Chlorocebus aethiops, Eulemur fulvus, and Varecia variegata). The ICoR is commonly located below the mandibular condyle close to the occlusal plane and varies considerably both superoinferiorly and anteroposteriorly through the gape cycle. The path of the ICoR, and by inference condylar movement, in Macaca and Chlorocebus differs from humans whereas movement in Cebus resembles that of humans. Similarities between humans and Cebus in articular eminence and occlusal morphology may explain these resemblances. Food material properties had little influence on ICoR movement parameters.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2013

How Effective Are Geometric Morphometric Techniques for Assessing Functional Shape Variation? An Example From the Great Ape Temporomandibular Joint

Claire E. Terhune

Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three‐dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one‐way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2015

Form and Function in the Platyrrhine Skull: A Three-Dimensional Analysis of Dental and TMJ Morphology

Claire E. Terhune; Siobhán B. Cooke; Erik Otárola-Castillo

Cranial and temporomandibular joint (TMJ) form has been shown to reflect masticatory forces and mandibular range of motion, which vary in relation to feeding strategy. Similarly, the dentition, as the portion of the masticatory apparatus most directly involved in triturating food items, strongly reflects dietary profile. Fine control over condylar and mandibular movements guides the teeth into occlusion, while the topography and position of the dental arcade mediate mandibular movements. We hypothesize that masticatory, and particularly TMJ, morphology and dental form covary in predictable ways with one another and with diet. We employed three‐dimensional geometric morphometric techniques to examine inter‐specific variation in ten platyrrhine species. Landmarks were collected on six datasets describing the upper and lower molars, cranium, glenoid fossa, mandible, and mandibular condyle; two‐block partial least squares analyses were performed to assess covariation between cranial morphology, dentition, and diet. Significant relationships were identified between the molars and the cranium, mandible, and glenoid fossa. Some of these shape complexes reflect feeding strategy; for example, higher crowned/cusped dentitions, as found in primates consuming larger quantities of structural carbohydrates (e.g., Alouatta and Saimiri), correspond to anteroposterior longer and deeper glenoid fossae. These results indicate strong covariance between dental and TMJ form, aspects of which are related to feeding behavior. However, other aspects of morphological variation display a strong phylogenetic signal; we must therefore examine further ways in which to control for phylogeny when examining covariation in interspecific masticatory form. Anat Rec, 298:29–47, 2015.


Journal of Human Evolution | 2016

Mandibular ramus shape of Australopithecus sediba suggests a single variable species

Terrence Ritzman; Claire E. Terhune; Philipp Gunz; Chris A. Robinson

The fossils from Malapa cave, South Africa, attributed to Australopithecus sediba, include two partial skeletons-MH1, a subadult, and MH2, an adult. Previous research noted differences in the mandibular rami of these individuals. This study tests three hypotheses that could explain these differences. The first two state that the differences are due to ontogenetic variation and sexual dimorphism, respectively. The third hypothesis, which is relevant to arguments suggesting that MH1 belongs in the genus Australopithecus and MH2 in Homo, is that the differences are due to the two individuals representing more than one taxon. To test these hypotheses, we digitized two-dimensional sliding semilandmarks in samples of Gorilla, Pan, Pongo, and Homo, as well as MH1 and MH2. We document large amounts of shape variation within all extant species, which is related neither to ontogeny nor sexual dimorphism. Extant species nevertheless form clusters in shape space, albeit with some overlap. The shape differences in extant taxa between individuals in the relevant age categories are minimal, indicating that it is unlikely that ontogeny explains the differences between MH1 and MH2. Similarly, the pattern of differences between MH1 and MH2 is inconsistent with those found between males and females in the extant sample, suggesting that it is unlikely that sexual dimorphism explains these differences. While the difference between MH1 and MH2 is large relative to within-species comparisons, it does not generally fall outside of the confidence intervals for extant intraspecific variation. However, the MH1-MH2 distance also does not plot outside and below the between-species confidence intervals. Based on these results, as well as the contextual and depositional evidence, we conclude that MH1 and MH2 represent a single species and that the relatively large degree of variation in this species is due to neither ontogeny nor sexual dimorphism.


American Journal of Physical Anthropology | 2008

Temporal squama shape in fossil hominins: Relationships to cranial shape and a determination of character polarity

Claire E. Terhune; Andrew S. Deane

In 1943, Weidenreich described the squamosal suture of Homo erectus as long, low, and simian in character and suggested that this morphology was dependent upon the correlation between the size of the calvarium and the face. Many researchers now consider this character to be diagnostic of H. erectus. The relationship between cranial size and shape and temporal squama morphology, however, is unclear, and several authors have called for detailed measurements of squamosal variation to be collected before any conclusions are drawn regarding the nature of the morphology observed in H. erectus. Thirteen fossil and extant taxa were examined to address two questions: 1) Are size and shape of the temporal squama correlated with cranial vault morphology? and 2) Is the H. erectus condition plesiomorphic? To answer these questions, measurements were collected and indices were calculated for squamosal suture height, length, and area in relation to metric variables describing cranial size and shape. A two-dimensional morphometric study was also completed using High Resolution-Polynomial Curve Fitting (HR-PCF) to investigate correlations between curvature of the squamosal suture and curvature of the cranial vault. Results of both analyses indicate that squamosal suture form is related to cranial size and shape. Furthermore, the plesiomorphic condition of the squamosal suture for hominins was identified as high and moderately arched; this condition is retained in H. erectus and is distinct from the great ape condition. It is suggested that this similarity is the result of increased cranial length without a corresponding increase in cranial height.


Journal of Morphology | 2014

Ontogenetic Variation in the Mandibular Ramus of Great Apes and Humans

Claire E. Terhune; Chris A. Robinson; Terrence Ritzman

Considerable variation exists in mandibular ramus form among primates, particularly great apes and humans. Recent analyses of adult ramal morphology have suggested that features on the ramus, especially the coronoid process and sigmoid notch, can be treated as phylogenetic characters that can be used to reconstruct relationships among great ape and fossil hominin taxa. Others have contended that ramal morphology is more influenced by function than phylogeny. In addition, it remains unclear how ontogeny of the ramus contributes to adult variation in great apes and humans. Specifically, it is unclear whether differences among adults appear early and are maintained throughout ontogeny, or if these differences appear, or are enhanced, during later development. To address these questions, the present study examined a broad ontogenetic sample of great apes and humans using two‐dimensional geometric morphometric analysis. Variation within and among species was summarized using principal component and thin plate spline analyses, and Procrustes distances and discriminant function analyses were used to statistically compare species and age classes. Results suggest that morphological differences among species in ramal morphology appear early in ontogeny and persist into adulthood. Morphological differences among adults are particularly pronounced in the height and angulation of the coronoid process, the depth and anteroposterior length of the sigmoid notch, and the inclination of the ramus. In all taxa, the ascending ramus of the youngest specimens is more posteriorly inclined in relation to the occlusal plane, shifting to become more upright in adults. These results suggest that, although there are likely functional influences over the form of the coronoid process and ramus, the morphology of this region can be profitably used to differentiate among great apes, modern humans, and fossil hominid taxa. J. Morphol. 275:661–677, 2014.

Collaboration


Dive into the Claire E. Terhune's collaboration.

Top Co-Authors

Avatar

Chris A. Robinson

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Vinyard

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge