Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Armit is active.

Publication


Featured researches published by Chris Armit.


Development | 2011

The GUDMAP database – an online resource for genitourinary research

Simon Harding; Chris Armit; Jane Armstrong; Jane Brennan; Ying Cheng; Bernard Haggarty; Derek Houghton; Sue Lloyd-MacGilp; Xingjun Pi; Yogmatee Roochun; Mehran Sharghi; Christopher Tindal; Andrew P. McMahon; Brian Gottesman; Melissa H. Little; Kylie Georgas; Bruce J. Aronow; S. Steven Potter; Eric W. Brunskill; E. Michelle Southard-Smith; Cathy Mendelsohn; Richard Baldock; Jamie A. Davies; Duncan Davidson

The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.


Mammalian Genome | 2012

eMouseAtlas, EMAGE, and the spatial dimension of the transcriptome

Chris Armit; Shanmugasundaram Venkataraman; Lorna Richardson; Peter Stevenson; Julie Moss; Liz Graham; Allyson Ross; Yiya Yang; Nicholas Burton; Jianguo Rao; Bill Hill; Dominic Rannie; Mike Wicks; Duncan Davidson; Richard Baldock

AbstracteMouseAtlas (www.emouseatlas.org) is a comprehensive online resource to visualise mouse development and investigate gene expression in the mouse embryo. We have recently deployed a completely redesigned Mouse Anatomy Atlas website (www.emouseatlas.org/emap/ema) that allows users to view 3D embryo reconstructions, delineated anatomy, and high-resolution histological sections. A new feature of the website is the IIP3D web tool that allows a user to view arbitrary sections of 3D embryo reconstructions using a web browser. This feature provides interactive access to very high-volume 3D images via a tiled pan-and-zoom style interface and circumvents the need to download large image files for visualisation. eMouseAtlas additionally includes EMAGE (Edinburgh Mouse Atlas of Gene Expression) (www.emouseatlas.org/emage), a freely available, curated online database of in situ gene expression patterns, where gene expression domains extracted from raw data images are spatially mapped into atlas embryo models. In this way, EMAGE introduces a spatial dimension to transcriptome data and allows exploration of the spatial similarity between gene expression patterns. New features of the EMAGE interface allow complex queries to be built, and users can view and compare multiple gene expression patterns. EMAGE now includes mapping of 3D gene expression domains captured using the imaging technique optical projection tomography. 3D mapping uses WlzWarp, an open-source software tool developed by eMouseAtlas.


Methods of Molecular Biology | 2012

Access and Use of the GUDMAP Database of Genitourinary Development

Jamie A. Davies; Melissa H. Little; Bruce J. Aronow; Jane Armstrong; Jane Brennan; Sue Lloyd-MacGilp; Chris Armit; Simon Harding; Xinjun Piu; Yogmatee Roochun; Bernard Haggarty; Derek Houghton; Duncan Davidson; Richard Baldock

The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.


Mammalian Genome | 2015

eMouseAtlas informatics: embryo atlas and gene expression database.

Chris Armit; Lorna Richardson; Bill Hill; Yiya Yang; Richard Baldock

A significant proportion of developmental biology data is presented in the form of images at morphologically diverse stages of development. The curation of these datasets presents different challenges to that of sequence/text-based data. Towards this end, the eMouseAtlas project created a digital atlas of mouse embryo development as a means of understanding developmental anatomy and exploring the relationship between genes and development in a spatial context. Using the morphological staging system pioneered by Karl Theiler, the project has generated 3D models of post-implantation mouse development and used them as a spatial framework for the delineation of anatomical components and for archiving in situ gene expression data in the EMAGE database. This has allowed us to develop a unique online resource for mouse developmental biology. We describe here the underlying structure of the resource, as well as some of the tools that have been developed to allow users to mine the curated image data. These tools include our IIP3D/X3DOM viewer that allows 3D visualisation of anatomy and/or gene expression in the context of a web browser, and the eHistology resource that extends this functionality to allow visualisation of high-resolution cellular level images of histology sections. Furthermore, we review some of the informatics aspects of eMouseAtlas to provide a deeper insight into the use of the atlas and gene expression database.


Database | 2015

Developing the eHistology Atlas.

Lorna Richardson; Liz Graham; Julie Moss; Nick Burton; Yogmatee Roochun; Chris Armit; Richard Baldock

The eMouseAtlas project has undertaken to generate a new resource providing access to high-resolution colour images of the slides used in the renowned textbook ‘The Atlas of Mouse Development’ by Matthew H. Kaufman. The original histology slides were digitized, and the associated anatomy annotations captured for display in the new resource. These annotations were assigned to objects in the standard reference anatomy ontology, allowing the eHistology resource to be linked to other data resources including the Edinburgh Mouse Atlas Gene-Expression database (EMAGE) an the Mouse Genome Informatics (MGI) gene-expression database (GXD). The provision of the eHistology Atlas resource was assisted greatly by the expertise of the eMouseAtlas project in delivering large image datasets within a web environment, using IIP3D technology. This technology also permits future extensions to the resource through the addition of further layers of data and annotations to the resource. Database URL: www.emouseatlas.org/emap/eHistology/index.php


GigaScience | 2018

eHistology image and annotation data from the Kaufman Atlas of Mouse Development

Richard Baldock; Chris Armit

Abstract “The Atlas of Mouse Development” by Kaufman is a classic paper atlas that is the de facto standard for the definition of mouse embryo anatomy in the context of standard histological images. We have redigitized the original haematoxylin and eosin–stained tissue sections used for the book at high resolution and transferred the hand-drawn annotations to digital form. We have augmented the annotations with standard ontological assignments (EMAPA anatomy) and made the data freely available via an online viewer (eHistology) and from the University of Edinburgh DataShare archive. The dataset captures and preserves the definitive anatomical knowledge of the original atlas, provides a core image set for deeper community annotation and teaching, and delivers a unique high-quality set of high-resolution histological images through mammalian development for manual and automated analysis.


Archive | 2017

3D mouse embryo model: EMA38, Stage TS16, Age E10.0 (est)

Bill Hill; Richard Baldock; Lorna Richardson; Nick Burton; Elizabeth Graham; Renske Brune; Julie Moss; Duncan Davidson; Chris Armit

The eMouseAtlas team have generated a series of 3D images to capture mouse embryo development and to use as a spatial framework for gene-expression and other spatially organised data. The resource is published and available on the Web at http://www.emouseatlas.org/emap/ema/.


Archive | 2017

3D mouse embryo model: EMA80, Stage TS23, Age E15.0 (est)

Bill Hill; Richard Baldock; Lorna Richardson; Nick Burton; Elizabeth Graham; Renske Brune; Julie Moss; Duncan Davidson; Chris Armit

The eMouseAtlas team have generated a series of 3D images to capture mouse embryo development and to use as a spatial framework for gene-expression and other spatially organised data. The resource is published and available on the Web at http://www.emouseatlas.org/emap/ema/.


Database | 2017

The ‘straight mouse’: defining anatomical axes in 3D embryo models

Chris Armit; Bill Hill; Shanmugasundaram Venkataraman; Kenneth McLeod; Albert Burger; Richard Baldock

Abstract A primary objective of the eMouseAtlas Project is to enable 3D spatial mapping of whole embryo gene expression data to capture complex 3D patterns for indexing, visualization, cross-comparison and analysis. For this we have developed a spatio-temporal framework based on 3D models of embryos at different stages of development coupled with an anatomical ontology. Here we introduce a method of defining coordinate axes that correspond to the anatomical or biologically relevant anterior–posterior (A–P), dorsal–ventral (D–V) and left–right (L–R) directions. These enable more sophisticated query and analysis of the data with biologically relevant associations, and provide novel data visualizations that can reveal patterns that are otherwise difficult to detect in the standard 3D coordinate space. These anatomical coordinates are defined using the concept of a ‘straight mouse-embryo’ within which the anatomical coordinates are Cartesian. The straight embryo model has been mapped via a complex non-linear transform onto the standard embryo model. We explore the utility of this anatomical coordinate system in elucidating the spatial relationship of spatially mapped embryonic ‘Fibroblast growth factor’ gene expression patterns, and we discuss the importance of this technology in summarizing complex multimodal mouse embryo image data from gene expression and anatomy studies. Database URL: www.emouseatlas.org


Kaufman's Atlas of Mouse Development Supplement#R##N#Coronal Images | 2016

2 – Coronal Sections

David J. Price; Elizabeth Graham; Julie Moss; Chris Armit; Richard Baldock

The original The Atlas of Mouse Development by Matt Kaufman (MK) included transverse and sagittal sections at multiple stages of development, but only two plates of coronal sections (stages E14.5 (plate 34) and E16.5 (plate 39)). When a revised version of the Atlas was suggested, a survey of users recommended that the series of coronal sections should be extended to include additional stages of development, particularly the brain at E11, E11.5, E12.5, E13.5, and E15.5. This chapter presents these new coronal sections, together with some new sections to extend the E14.5 images provided in the original Atlas. These sections include some original annotations from MK that are supplemented by more detailed brain annotations.

Collaboration


Dive into the Chris Armit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Burton

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Julie Moss

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bill Hill

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renske Brune

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge