Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorna Richardson is active.

Publication


Featured researches published by Lorna Richardson.


Nucleic Acids Research | 2017

InterPro in 2017—beyond protein family and domain annotations

Robert D. Finn; Teresa K. Attwood; Patricia C. Babbitt; Alex Bateman; Peer Bork; Alan Bridge; Hsin Yu Chang; Zsuzsanna Dosztányi; Sara El-Gebali; Matthew Fraser; Julian Gough; David R Haft; Gemma L. Holliday; Hongzhan Huang; Xiaosong Huang; Ivica Letunic; Rodrigo Lopez; Shennan Lu; Huaiyu Mi; Jaina Mistry; Darren A. Natale; Marco Necci; Gift Nuka; Christine A. Orengo; Youngmi Park; Sebastien Pesseat; Damiano Piovesan; Simon Potter; Neil D. Rawlings; Nicole Redaschi

InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPros predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.


Nucleic Acids Research | 2010

EMAGE mouse embryo spatial gene expression database: 2010 update

Lorna Richardson; Shanmugasundaram Venkataraman; Peter Stevenson; Yiya Yang; Nicholas Burton; Jianguo Rao; Malcolm Fisher; Richard Baldock; Duncan Davidson; Jeffrey H. Christiansen

EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE.


Nucleic Acids Research | 2006

EMAGE: a spatial database of gene expression patterns during mouse embryo development

Jeffrey H. Christiansen; Yiya Yang; Shanmugasundaram Venkataraman; Lorna Richardson; Peter Stevenson; Nicholas Burton; Richard Baldock; Duncan Davidson

EMAGE () is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As such, the data can be interrogated in a novel and abstract manner by using space to define a query. Accompanying the spatial representations of gene expression patterns are text descriptions of the sites of expression, which also allows searching of the data by more conventional text-based methods.


Database | 2011

Towards BioDBcore: a community-defined information specification for biological databases

Pascale Gaudet; Amos Marc Bairoch; Dawn Field; Susanna-Assunta Sansone; Chris Taylor; Teresa K. Attwood; Alex Bateman; Judith A. Blake; J. Michael Cherry; Rex L. Chrisholm; Guy Cochrane; Charles E. Cook; Janan T. Eppig; Michael Y. Galperin; Robert Gentleman; Carole A. Goble; Takashi Gojobori; John M. Hancock; Douglas G. Howe; Tadashi Imanishi; Janet Kelso; David Landsman; Suzanna E. Lewis; Ilene Karsch Mizrachi; Sandra Orchard; B. F. Francis Ouellette; Shoba Ranganathan; Lorna Richardson; Philippe Rocca-Serra; Paul N. Schofield

The present article proposes the adoption of a community-defined, uniform, generic description of the core attributes of biological databases, BioDBCore. The goals of these attributes are to provide a general overview of the database landscape, to encourage consistency and interoperability between resources; and to promote the use of semantic and syntactic standards. BioDBCore will make it easier for users to evaluate the scope and relevance of available resources. This new resource will increase the collective impact of the information present in biological databases.


Nucleic Acids Research | 2008

EMAGE--Edinburgh Mouse Atlas of Gene Expression: 2008 update.

Shanmugasundaram Venkataraman; Peter Stevenson; Yiya Yang; Lorna Richardson; Nicholas Burton; Thomas P. Perry; Paul R. Smith; Richard Baldock; Duncan Davidson; Jeffrey H. Christiansen

EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a database of in situ gene expression patterns in the developing mouse embryo. Domains of expression from raw data images are spatially integrated into a set of standard 3D virtual mouse embryos at different stages of development, allowing data interrogation by spatial methods. Sites of expression are also described using an anatomy ontology and data can be queried using text-based methods. Here we describe recent enhancements to EMAGE which include advances in spatial search methods including: a refined local spatial similarity search algorithm, a method to allow global spatial comparison of patterns in EMAGE and subsequent hierarchical-clustering, and spatial searches across multiple stages of development. In addition, we have extended data access by the introduction of web services and new HTML-based search interfaces, which allow access to data that has not yet been spatially annotated. We have also started incorporating full 3D images of gene expression that have been generated using optical projection tomography (OPT).


Mammalian Genome | 2012

eMouseAtlas, EMAGE, and the spatial dimension of the transcriptome

Chris Armit; Shanmugasundaram Venkataraman; Lorna Richardson; Peter Stevenson; Julie Moss; Liz Graham; Allyson Ross; Yiya Yang; Nicholas Burton; Jianguo Rao; Bill Hill; Dominic Rannie; Mike Wicks; Duncan Davidson; Richard Baldock

AbstracteMouseAtlas (www.emouseatlas.org) is a comprehensive online resource to visualise mouse development and investigate gene expression in the mouse embryo. We have recently deployed a completely redesigned Mouse Anatomy Atlas website (www.emouseatlas.org/emap/ema) that allows users to view 3D embryo reconstructions, delineated anatomy, and high-resolution histological sections. A new feature of the website is the IIP3D web tool that allows a user to view arbitrary sections of 3D embryo reconstructions using a web browser. This feature provides interactive access to very high-volume 3D images via a tiled pan-and-zoom style interface and circumvents the need to download large image files for visualisation. eMouseAtlas additionally includes EMAGE (Edinburgh Mouse Atlas of Gene Expression) (www.emouseatlas.org/emage), a freely available, curated online database of in situ gene expression patterns, where gene expression domains extracted from raw data images are spatially mapped into atlas embryo models. In this way, EMAGE introduces a spatial dimension to transcriptome data and allows exploration of the spatial similarity between gene expression patterns. New features of the EMAGE interface allow complex queries to be built, and users can view and compare multiple gene expression patterns. EMAGE now includes mapping of 3D gene expression domains captured using the imaging technique optical projection tomography. 3D mapping uses WlzWarp, an open-source software tool developed by eMouseAtlas.


Database | 2011

The BioMart interface to the eMouseAtlas gene expression database EMAGE

Peter Stevenson; Lorna Richardson; Shanmugasundaram Venkataraman; Yiya Yang; Richard Baldock

Here, we describe the BioMart interface to the eMouseAtlas gene expression database EMAGE. EMAGE is a spatiotemporal database of in situ gene expression patterns in the developing mouse embryo. BioMart provides a generic web query interface and programmable access using web services. The BioMart interface extends access to EMAGE via a powerful method of structuring complex queries and one with which users may already be familiar with from other BioMart implementations. The interface is structured into several data sets providing the user with comprehensive query access to the EMAGE data. The federated nature of BioMart allows scope for integration and cross querying of EMAGE with other similar BioMarts. Database URL: http://biomart.emouseatlas.org


Methods of Molecular Biology | 2014

EMAGE: Electronic Mouse Atlas of Gene Expression

Lorna Richardson; Peter Stevenson; Shanmugasundaram Venkataraman; Yiya Yang; Nick Burton; Jianguo Rao; Jeffrey H. Christiansen; Richard Baldock; Duncan Davidson

The EMAGE (Electronic Mouse Atlas of Gene Expression) database (http://www.emouseatlas.org/emage) allows users to perform on-line queries of mouse developmental gene expression. EMAGE data are represented spatially using a framework of 3D mouse embryo models, thus allowing uniquely spatial queries to be carried out alongside more traditional text-based queries. This spatial representation of the data also allows a comparison of spatial similarity between the expression patterns. The data are mapped to the models by a team of curators using bespoke mapping software, and the associated meta-data are curated for accuracy and completeness. The data contained in EMAGE are gathered from three main sources: from the published literature, through large-scale screens and collaborations, and via direct submissions from researchers. There are a variety of ways to query the EMAGE database via the on-line search interfaces, as well as via direct computational script-based queries. EMAGE is a free, on-line, community resource funded by the Medical Research Council, UK.


Mammalian Genome | 2015

eMouseAtlas informatics: embryo atlas and gene expression database.

Chris Armit; Lorna Richardson; Bill Hill; Yiya Yang; Richard Baldock

A significant proportion of developmental biology data is presented in the form of images at morphologically diverse stages of development. The curation of these datasets presents different challenges to that of sequence/text-based data. Towards this end, the eMouseAtlas project created a digital atlas of mouse embryo development as a means of understanding developmental anatomy and exploring the relationship between genes and development in a spatial context. Using the morphological staging system pioneered by Karl Theiler, the project has generated 3D models of post-implantation mouse development and used them as a spatial framework for the delineation of anatomical components and for archiving in situ gene expression data in the EMAGE database. This has allowed us to develop a unique online resource for mouse developmental biology. We describe here the underlying structure of the resource, as well as some of the tools that have been developed to allow users to mine the curated image data. These tools include our IIP3D/X3DOM viewer that allows 3D visualisation of anatomy and/or gene expression in the context of a web browser, and the eHistology resource that extends this functionality to allow visualisation of high-resolution cellular level images of histology sections. Furthermore, we review some of the informatics aspects of eMouseAtlas to provide a deeper insight into the use of the atlas and gene expression database.


Developmental Biology | 2017

eMouseAtlas:an atlas-based resource for understanding mammalian embryogenesis

Christopher Armit; Lorna Richardson; Shanmugasundaram Venkataraman; Liz Graham; Nicholas Burton; Bill Hill; Yiya Yang; Richard Baldock

The eMouseAtlas resource is an online database of 3D digital models of mouse development, an ontology of mouse embryo anatomy and a gene-expression database with about 30K spatially mapped gene-expression patterns. It is closely linked with the MGI/GXD database at the Jackson Laboratory and holds links to almost all available image-based gene-expression data for the mouse embryo. In this resource article we describe the novel web-based tools we have developed for 3D visualisation of embryo anatomy and gene expression. We show how mapping of gene expression data onto spatial models delivers a framework for capturing gene expression that enhances our understanding of development, and we review the exploratory tools utilised by the EMAGE gene expression database as a means of defining co-expression of in situ hybridisation, immunohistochemistry, and lacZ-omic expression patterns. We report on recent developments of the eHistology atlas and our use of web-services to support embedding of the online ‘The Atlas of Mouse Development’ in the context of other resources such as the DMDD mouse phenotype database. In addition, we discuss new developments including a cellular-resolution placental atlas, third-party atlas models, clonal analysis data and a new interactive eLearning resource for developmental processes.

Collaboration


Dive into the Lorna Richardson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Armit

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Nick Burton

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Julie Moss

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bill Hill

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar

Renske Brune

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge