Chris D. Collins
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris D. Collins.
Environmental Pollution | 2011
Jose L. Gomez-Eyles; Tom Sizmur; Chris D. Collins; Mark E. Hodson
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg(-1)) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg(-1)) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg(-1)), Cu (60.0 to 120.1 mg kg(-1)) and Ni (31.7 to 83.0 mg kg(-1)) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg(-1)). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.
Water Research | 2009
Jin Huang; Nigel Graham; Michael R. Templeton; Yanping Zhang; Chris D. Collins; Mark J. Nieuwenhuijsen
The contribution of two blue-green algae species, Anabaena flos-aquae and Microcystis aeruginosa, to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated. The experiments examined the formation potential of these disinfection by-products (DBPs) from both algae cells and extracellular organic matter (EOM) during four algal growth phases. Algal cells and EOM of Anabaena and Microcystis exhibited a high potential for DBP formation. Yields of total THMs (TTHM) and total HAAs (THAA) were closely related to the growth phase. Reactivity of EOM from Anabaena was slightly higher than corresponding cells, while the opposite result was found for Microcystis. Specific DBP yields (yield/unit C) of Anabaena were in the range of 2-11micromol/mmol C for TTHM and 2-17micromol/mmol C for THAA, while those of Microcystis were slightly higher. With regard to the distributions of individual THM and HAA compounds, differences were observed between the algae species and also between cells and EOM. The presence of bromide shifted the dominant compounds from HAAs to THMs.
Environmental Science & Technology | 2003
Chris D. Collins; Mike Fryer
Currently, a variety of models are available for predicting the uptake, translocation, and elimination of organic contaminants by plants. These models range from simple deterministic risk assessment screening tools to more complex models that consider physical, chemical, and biological processes in a mechanistic manner. This study evaluates the performance of a range of such models and model types against experimental data sets. Three dynamic, three regression-based, and three steady-state and equilibrium models have been selected for evaluation. These models differ in terms of their scope, methodological approach, and complexity. Data from nine published experiments were used to create scenarios to test model performance. These experiments consider plant contamination via both soil and aerial exposure pathways. A total of 19 different organic chemicals were used in the experiments along with 7 different plant species. Model predictions of chemical concentrations in the relevant plant compartments were compared with the experimentally recorded values. The results indicate that dynamic models offer performance advantages for acute exposure durations and for rapidly changing environmental media. Equilibrium/steady-state and regression-based models perform better for chronic exposure durations, where stable conditions are more likely to exist. The selection of an appropriate plant uptake model will therefore be dependent on the requirements of the assessment, the nature of the environmental media, and the duration of the source term. The results generated by the regression-based models suggest that in their current form these models are unsuitable for evaluating the uptake of organic chemicals from the air into plants.
Environmental Science & Technology | 2012
Jose L. Gomez-Eyles; Michiel T. O. Jonker; Mark E. Hodson; Chris D. Collins
A number of extraction methods have been developed to assess polycyclic aromatic hydrocarbon (PAH) bioavailability in soils. As these methods are rarely tested in a comparative manner, against different test organisms, and using field-contaminated soils, it is unclear which method gives the most accurate measure of the actual soil ecosystem exposure. In this study, PAH bioavailability was assessed in ten field-contaminated soils by using exhaustive acetone/hexane extractions, mild solvent (butanol) extractions, cyclodextrin extractions, and two passive sampling methods; solid phase micro extraction (SPME) and polyoxymethylene solid phase extraction (POM-SPE). Results were compared to actual PAH bioaccumulation in earthworms (Eisenia fetida) and rye grass (Lolium multiflorum) roots. Exhaustive, mild solvent and cyclodextrin extractions consistently overpredicted biotic concentrations by a factor of 10-10 000 and therefore seem inappropriate for predicting PAH bioaccumulation in field contaminated soils. In contrast, passive samplers generally predicted PAH concentrations in earthworms within a factor of 10, although correlations between predicted and measured concentrations were considerably scattered. The same applied to the plant data, where passive samplers also tended to underpredict root concentrations. These results indicate the potential of passive samplers to predict PAH bioaccumulation, yet call for comparative studies between passive samplers and further research on plant bioavailability.
Chemosphere | 2011
Laurence G. Cullen; Emma L. Tilston; Geoff R. Mitchell; Chris D. Collins; Liz J. Shaw
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g⁻¹ soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.
Environmental Science & Technology | 2010
Chris D. Collins; Eilis Finnegan
The soil-air-plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil-air-plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log K(OA) > 9 and log K(AW) < -3. For those pollutants with log K(OA) < 9 and log K(AW) > -3 there was a higher deposition of pollutant via the soil-air-plant pathway than for those chemicals with log K(OA) > 9 and log K(AW) < -3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil-root-shoot pathway. The incorporation of the soil-air-plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log K(OA). One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg(-1).
Environmental Pollution | 2010
Jose L. Gomez-Eyles; Chris D. Collins; Mark E. Hodson
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r(2) < or = 0.54, p < or = 0.01); cyclodextrin, butanol and acetone-hexane extractions all gave good predictions of accumulation in rye grass roots (r(2) < or = 0.86, p < or = 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone.
Environmental Pollution | 2013
Emma L. Tilston; Chris D. Collins; Geoffrey R. Mitchell; Jessica Princivalle; Liz J. Shaw
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg(-1) to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Environmental Science & Technology | 2011
Emma L. Tilston; Glen R. Gibson; Chris D. Collins
Assessment of the risk to human health posed by contaminated land may be seriously overestimated if reliant on total pollutant concentration. In vitro extraction tests, such as the physiologically based extraction test (PBET), imitate the physicochemical conditions of the human gastro-intestinal tract and offer a more practicable alternative for routine testing purposes. However, even though passage through the colon accounts for approximately 80% of the transit time through the human digestive tract and the typical contents of the colon in vivo are a carbohydrate-rich aqueous medium with the potential to promote desorption of organic pollutants, PBET comprises stomach and small intestine compartments only. Through addition of an eight-hour colon compartment to PBET and use of a carbohydrate-rich fed-state medium we demonstrated that colon-extended PBET (CE-PBET) increased assessments of soil-bound PAH bioaccessibility by up to 50% in laboratory soils and a factor of 4 in field soils. We attribute this increased bioaccessibility to a combination of the additional extraction time and the presence of carbohydrates in the colon compartment, both of which favor PAH desorption from soil. We propose that future assessments of the bioaccessibility of organic pollutants in soils using physiologically based extraction tests should have a colon compartment as in CE-PBET.
Journal of Environmental Monitoring | 2012
Mohamed Abou-Elwafa Abdallah; Emma L. Tilston; Stuart Harrad; Chris D. Collins
An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L⁻¹) compared to the α- and β-isomers (45 and 15 μg L⁻¹ respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora--which may act enantioselectively--are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32-58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.