Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris M. B. Holt is active.

Publication


Featured researches published by Chris M. B. Holt.


Energy and Environmental Science | 2013

Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors

Zhi Li; Zhanwei Xu; Xuehai Tan; Huanlei Wang; Chris M. B. Holt; Tyler Stephenson; Brian C. Olsen; David Mitlin

In this work we demonstrate that biomass-derived proteins serve as an ideal precursor for synthesizing carbon materials for energy applications. The unique composition and structure of the carbons resulted in very promising electrochemical energy storage performance. We obtained a reversible lithium storage capacity of 1780 mA h g−1, which is among the highest ever reported for any carbon-based electrode. Tested as a supercapacitor, the carbons exhibited a capacitance of 390 F g−1, with an excellent cycle life (7% loss after 10 000 cycles). Such exquisite properties may be attributed to a unique combination of a high specific surface area, partial graphitization and very high bulk nitrogen content. It is a major challenge to derive carbons possessing all three attributes. By templating the structure of mesoporous cellular foam with egg white-derived proteins, we were able to obtain hierarchically mesoporous (pores centered at ∼4 nm and at 20–30 nm) partially graphitized carbons with a surface area of 805.7 m2 g−1 and a bulk N-content of 10.1 wt%. When the best performing sample was heated in Ar to eliminate most of the nitrogen, the Li storage capacity and the specific capacitance dropped to 716 mA h g−1 and 80 F g−1, respectively.


ACS Nano | 2013

Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

Huanlei Wang; Zhanwei Xu; Alireza Kohandehghan; Zhi Li; Kai Cui; Xuehai Tan; Tyler Stephenson; Cecil K. King’ondu; Chris M. B. Holt; Brian C. Olsen; Jin Kwon Tak; Don Harfield; Anthony O. Anyia; David Mitlin

We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.


Nano Research | 2012

Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading

Huanlei Wang; Chris M. B. Holt; Zhi Li; Xuehai Tan; Babak Shalchi Amirkhiz; Zhanwei Xu; Brian C. Olsen; Tyler Stephenson; David Mitlin

AbstractA high performance asymmetric electrochemical supercapacitor with a mass loading of 10 mg·cm−2 on each planar electrode has been fabricated by using a graphene-nickel cobaltite nanocomposite (GNCC) as a positive electrode and commercial activated carbon (AC) as a negative electrode. Due to the rich number of faradaic reactions on the nickel cobaltite, the GNCC positive electrode shows significantly higher capacitance (618 F·g−1) than graphene-Co3O4 (340 F·g−1) and graphene-NiO (375 F·g−1) nanocomposites synthesized under identical conditions. More importantly, graphene greatly enhances the conductivity of nickel cobaltite and allows the positive electrode to charge/discharge at scan rates similar to commercial AC negative electrodes. This improves both the energy density and power density of the asymmetric cell. The asymmetric cell composed of 10 mg GNCC and 30 mg AC displayed an energy density in the range of 19.5 Wh·kg−1 with an operational voltage of 1.4 V. At high sweep rate, the system is capable of delivering an energy density of 7.6 Wh·kg−1 at a power density of about 5600 W·kg−1. Cycling results demonstrate that the capacitance of the cell increases to 116% of the original value after the first 1600 cycles due to a progressive activation of the electrode, and maintains 102% of the initial value after 10000 cycles.


Energy and Environmental Science | 2014

Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor

Zhi Li; Zhanwei Xu; Huanlei Wang; Jia Ding; Beniamin Zahiri; Chris M. B. Holt; Xuehai Tan; David Mitlin

Here we demonstrate a facile template-free synthesis route to create macroscopically monolithic carbons that are both highly nitrogen rich (4.1–7.6 wt%) and highly microporous (SA up to 1405 m2 g−1, 88 vol% micropores). While such materials, which are derived from common chicken egg whites, are expected to be useful in a variety of applications, they are extremely promising for electrochemical capacitors based on aqueous electrolytes. The Highly Functionalized Activated Carbons (HFACs) demonstrate a specific capacitance of >550 F g−1 at 0.25 A g−1 and >350 F g−1 at 10 A g−1 in their optimized state. These are among the highest values reported in the literature for carbon-based electrodes, including for systems such as templated carbons and doped graphene. We show that HFACs serve as ideal negative electrodes in asymmetric supercapacitors, where historically the specific capacitance of the oxide-based positive electrode was mismatched with the much lower specific capacitance of the opposing AC. An asymmetric cell employing HFACs demonstrates a 2× higher specific energy and a 4× higher volumetric energy density as compared to the one employing a high surface area commercial AC. With 3.5 mg cm−2 of HFAC opposing 5.0 mg cm−2 of NiCo2O4/graphene, specific energies (active mass normalized) of 48 W h kg−1 at 230 W kg−1 and 28 W h kg−1 at 1900 W kg−1 are achieved. The asymmetric cell performance is among the best in the literature for hybrid aqueous systems, and actually rivals cells operating with a much wider voltage window in organic electrolytes.


RSC Advances | 2012

Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis

Zhanwei Xu; Zhi Li; Xuehai Tan; Chris M. B. Holt; Li Zhang; Babak Shalchi Amirkhiz; David Mitlin

Cobalt molybdate (CoMoO4) nanoplatelets with a crystalline-amorphous core-shell structure anchored via multi-walled carbon nanotubes were prepared by a solvent-free microwave synthesis method. The entire procedure took only 15 min. The nanocomposite shows a promising capacitance of 170 F g−1 with a potential window of 0.8 V, degrading by only 6.8% after 1000 cycles.


Energy and Environmental Science | 2012

Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells

Li Zhang; Liya Wang; Chris M. B. Holt; Beniamin Zahiri; Zhi Li; Kourosh Malek; Titichai Navessin; Michael Eikerling; David Mitlin

Nanocomposite materials consisting of platinum deposited on carbon nanotubes are emerging electrocatalysts for the oxygen reduction reaction in PEM fuel cells. However, these materials albeit showing promising electrocatalytic activities suffer from unacceptable rates of corrosion during service. This study demonstrates an effective strategy for creating highly corrosion-resistant electrocatalysts utilizing metal oxide coated carbon nanotubes as a support for Pt. The electrode geometry consisted of a three-dimensional array of multi-walled carbon nanotubes grown directly on Inconel and conformally covered by a bilayer of Pt/niobium oxide. The activities of these hybrid carbon-metal oxide materials are on par with commercially available carbon-supported Pt catalysts. We show that a sub-nanometre interlayer of NbO2 provides effective protection from electrode corrosion. After 10,000 cyclic voltammetry cycles from 0.5 V to 1.4 V, the loss of electrochemical surface area, reduction of the half-wave potential, and the loss of specific activity of the NbO2 supported Pt were 10.8%, 8 mV and 10.3%, respectively. Under the same conditions, the catalytic layers with Pt directly deposited onto carbon nanotubes had a loss of electrochemical area, reduction of half-wave potential and loss of specific activity of 47.3%, 65 mV and 65.8%, respectively. The improved corrosion resistance is supported by microstructural observations of both electrodes in their post-cycled state. First principles calculations at the density functional theory level were performed to gain further insight into changes in wetting properties, stability and electronic structure introduced by the insertion of the thin NbO2 film.


Journal of Materials Chemistry | 2012

Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer

Elmira Memarzadeh; W. Peter Kalisvaart; Alireza Kohandehghan; Beniamin Zahiri; Chris M. B. Holt; David Mitlin

We investigated the effect of aluminum coating layers and of the support growth substrates on the electrochemical performance of silicon nanowires (SiNWs) used as negative electrodes in lithium ion battery half-cells. Extensive TEM and SEM analysis was utilized to detail the cycling induced morphology changes in both the Al-SiNW nanocomposites and in the baseline SiNWs. We observed an improved cycling performance in the Si nanowires that were coated with 3 and 8 wt.% aluminum. After 50 cycles, both the bare and the 3 wt.% Al coated nanowires retained 2600 mAh/g capacity. However beyond 50 cycles, the coated nanowires showed higher capacity as well as better capacity retention with respect to the first cycle. Our hypothesis is that the nanoscale yet continuous electrochemically active aluminum shell places the Si nanowires in compression, reducing the magnitude of their cracking/disintegration and the subsequent loss of electrical contact with the electrode. We combined impedance spectroscopy with microscopy analysis to demonstrate how the Al coating affects the solid electrolyte interface (SEI). A similar thickness alumina (Al2O3) coating, grown via atomic layer deposition (ALD), was shown not to be as effective in reducing the long-term capacity loss. We demonstrate that an electrically conducting TiN barrier layer present between the nanowires and the underlying stainless steel current collector leads to a higher specific capacity during cycling and a significantly improved coulombic efficiency. Using TiN the irreversible capacity loss was only 6.9% from the initial 3581 mAh/g, while the first discharge (lithiation) capacity loss was only 4%. This is one of the best combinations reported in literature.


Journal of Applied Physics | 2010

Nanomechanical torque magnetometry of permalloy cantilevers

Joseph Losby; Jacob A. J. Burgess; Chris M. B. Holt; Jocelyn N. Westwood; David Mitlin; Wayne K. Hiebert; Mark R. Freeman

There is mounting interest in bridging the fields of nanomechanics and nanomagnetism. Metallic nanocantilevers, which are magnetic throughout their volume, were fabricated using permalloy in order to detect domain switching along the cantilever length through mechanical deflection driven by magnetic torque. A finite element model describing the interaction of the magnetization of the cantilever with an external driving field is discussed, and illustrated for the simple example of magnetization reversal via propagation of a straight domain wall. The interferometrically obtained cantilever deflection through the magnetic actuation of the fundamental mode exhibits magnetic hysteresis. The experimental results are also compared to the finite element mechanical transformation of the output from a Landau–Lifshitz–Gilbert based micromagnetic simulation of the hysteresis.


Scientific Reports | 2016

Nanoscale Structure, Dynamics, and Aging Behavior of Metallic Glass Thin Films

Jacob A. J. Burgess; Chris M. B. Holt; Erik J. Luber; D. C. Fortin; Greg Popowich; Ben Zahiri; Paul Concepcion; David Mitlin; Mark R. Freeman

Scanning tunnelling microscopy observations resolve the structure and dynamics of metallic glass Cu100−xHfx films and demonstrate scanning tunnelling microscopy control of aging at a metallic glass surface. Surface clusters exhibit heterogeneous hopping dynamics. Low Hf concentration films feature an aged surface of larger, slower clusters. Argon ion-sputtering destroys the aged configuration, yielding a surface in constant fluctuation. Scanning tunnelling microscopy can locally restore the relaxed state, allowing for nanoscale lithographic definition of aged sections.


Advanced Energy Materials | 2012

Carbonized Chicken Eggshell Membranes with 3D Architectures as High‐Performance Electrode Materials for Supercapacitors

Zhi Li; Li Zhang; Babak Shalchi Amirkhiz; Xuehai Tan; Zhanwei Xu; Huanlei Wang; Brian C. Olsen; Chris M. B. Holt; David Mitlin

Collaboration


Dive into the Chris M. B. Holt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Li

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huanlei Wang

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhang

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge